IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp663-675.html
   My bibliography  Save this article

Effect of cell size in metal foam inserted to the air channel of polymer electrolyte membrane fuel cell for high performance

Author

Listed:
  • Shin, Dong Kyu
  • Yoo, Jin Hyuk
  • Kang, Dong Gyun
  • Kim, Min Soo

Abstract

In this study, metal foam insert was suggested as a novel flow path for polymer electrolyte membrane fuel cell to improve the performance of fuel cell. For the experimental works in this study, four types of metal foams which have different cell size were used, and performance and characteristics of fuel cell with each metal foam were investigated by several methods. As a result, we found that the maximum power of fuel cell was increased about 50.6% by using proper metal foam compared to the conventional fuel cell with serpentine flow filed. We could also suggest a new flow path made by two metal foams which have different cell sizes. The mixed metal foam was made by combining the metal foam with large contact surface area to the upstream location of flow field and the metal foam with large diffusion area to the downstream location. Eventually, we could get about 60.1% of maximum power increase with this mixed metal foam as a flow path. Finally, the results obtained in this study can suggest a new flow path of PEMFC for improved performance and give a new concept of dividing flow field to make fuel cell operate more effectively.

Suggested Citation

  • Shin, Dong Kyu & Yoo, Jin Hyuk & Kang, Dong Gyun & Kim, Min Soo, 2018. "Effect of cell size in metal foam inserted to the air channel of polymer electrolyte membrane fuel cell for high performance," Renewable Energy, Elsevier, vol. 115(C), pages 663-675.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:663-675
    DOI: 10.1016/j.renene.2017.08.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117308467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Yanzhou & Li, Xianguo & Jiao, Kui & Du, Qing & Yin, Yan, 2014. "Effective removal and transport of water in a PEM fuel cell flow channel having a hydrophilic plate," Applied Energy, Elsevier, vol. 113(C), pages 116-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ercelik, Mustafa & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2023. "Efficient X-ray CT-based numerical computations of structural and mass transport properties of nickel foam-based GDLs for PEFCs," Energy, Elsevier, vol. 262(PB).
    2. Qiu, Diankai & Peng, Linfa & Yi, Peiyun & Lehnert, Werner & Lai, Xinmin, 2021. "Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Chen, Xi & Yang, Chen & Sun, Yun & Liu, Qinxiao & Wan, Zhongmin & Kong, Xiangzhong & Tu, Zhengkai & Wang, Xiaodong, 2022. "Water management and structure optimization study of nickel metal foam as flow distributors in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 309(C).
    4. Won, Jinyeon & Oh, Hwanyeong & Hong, Jongsup & Kim, Minjin & Lee, Won-Yong & Choi, Yoon-Young & Han, Soo-Bin, 2021. "Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 180(C), pages 343-352.
    5. Jianguo Zhao & Zihan Lin & Mingjue Zhou, 2022. "Three-Dimensional Modeling and Performance Study of High Temperature Solid Oxide Electrolysis Cell with Metal Foam," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    6. Luo, Lizhong & Jian, Qifei & Huang, Bi & Huang, Zipeng & Zhao, Jing & Cao, Songyang, 2019. "Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 143(C), pages 1067-1078.
    7. Kermani, M.J. & Moein-Jahromi, M. & Hasheminasab, M.R. & Ebrahimi, F. & Wei, L. & Guo, J. & Jiang, F.M., 2022. "Application of a foam-based functionally graded porous material flow-distributor to PEM fuel cells," Energy, Elsevier, vol. 254(PB).
    8. Son, Jonghyun & Um, Sukkee & Kim, Young-Beom, 2022. "Relationship between number of turns of serpentine structure with metal foam flow field and polymer electrolyte membrane fuel cell performance," Renewable Energy, Elsevier, vol. 188(C), pages 372-383.
    9. Lian, Yunsong & Zhu, Zhengchao & You, Changtang & Lin, Liangliang & Lin, Fengtian & Lin, Le & Huang, Yating & Zhou, Wei, 2023. "Structural optimization of fiber porous self-humidifying flow field plates applied to proton exchange membrane fuel cells," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    2. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    3. Chen, Xi & Wang, Chunxi & Xu, Jianghai & Long, Shichun & Chai, Fasen & Li, Wenbin & Song, Xingxing & Wang, Xuepeng & Wan, Zhongmin, 2023. "Membrane humidity control of proton exchange membrane fuel cell system using fractional-order PID strategy," Applied Energy, Elsevier, vol. 343(C).
    4. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    5. Purnima, P. & Jayanti, S., 2017. "Water neutrality and waste heat management in ethanol reformer - HTPEMFC integrated system for on-board hydrogen generation," Applied Energy, Elsevier, vol. 199(C), pages 169-179.
    6. Guo, Hang & Zhao, Qiang & Ye, Fang, 2022. "An experimental study on gas and liquid two-phase flow in orientated-type flow channels of proton exchange membrane fuel cells by using a side-view method," Renewable Energy, Elsevier, vol. 188(C), pages 603-618.
    7. Singdeo, Debanand & Dey, Tapobrata & Gaikwad, Shrihari & Andreasen, Søren Juhl & Ghosh, Prakash C., 2017. "A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell," Applied Energy, Elsevier, vol. 195(C), pages 13-22.
    8. Ferreira, Rui B. & Falcão, D.S. & Oliveira, V.B. & Pinto, A.M.F.R., 2015. "Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 82(C), pages 619-628.
    9. Ashrafi, Moosa & Shams, Mehrzad, 2017. "The effects of flow-field orientation on water management in PEM fuel cells with serpentine channels," Applied Energy, Elsevier, vol. 208(C), pages 1083-1096.
    10. Yanzhou Qin & Xuefeng Wang & Rouxian Chen & Xiang Shangguan, 2018. "Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability," Energies, MDPI, vol. 11(4), pages 1-17, April.
    11. Fan Yang & Xiaoming Xu & Yuehua Li & Dongfang Chen & Song Hu & Ziwen He & Yi Du, 2023. "A Review on Mass Transfer in Multiscale Porous Media in Proton Exchange Membrane Fuel Cells: Mechanism, Modeling, and Parameter Identification," Energies, MDPI, vol. 16(8), pages 1-24, April.
    12. Xu, Sheng & Yin, Bifeng & Li, Zekai & Dong, Fei, 2023. "A review on gas purge of proton exchange membrane fuel cells: Mechanisms, experimental approaches, numerical approaches, and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    13. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    14. Perng, Shiang-Wuu & Wu, Horng-Wen, 2015. "A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC," Applied Energy, Elsevier, vol. 143(C), pages 81-95.
    15. Chen, Hao & Guo, Hang & Ye, Fang & MA, Chong Fang, 2022. "Cell performance and flow losses of proton exchange membrane fuel cells with orientated-type flow channels," Renewable Energy, Elsevier, vol. 181(C), pages 1338-1352.
    16. Li, Jinguang & Ke, Yuzhi & Yuan, Wei & Bai, Yafeng & Zhang, Baotong & Liu, Zi'ang & Lin, Zhenhe & Liu, Qingsen & Tang, Yong, 2023. "Enhancement of two-phase flow and mass transport by a two-dimensional flow channel with variable cross-sections in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 219(P2).
    17. Pei, Pucheng & Li, Yuehua & Xu, Huachi & Wu, Ziyao, 2016. "A review on water fault diagnosis of PEMFC associated with the pressure drop," Applied Energy, Elsevier, vol. 173(C), pages 366-385.
    18. Yulin Wang & Xiangling Liao & Guokun Liu & Haokai Xu & Chao Guan & Huixuan Wang & Hua Li & Wei He & Yanzhou Qin, 2023. "Review of Flow Field Designs for Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 16(10), pages 1-54, May.
    19. Wang, Yulin & Wang, Xiaodong & Wang, Xiaoai & Liu, Tao & Zhu, Tingting & Liu, Shengchun & Qin, Yanzhou, 2021. "Droplet dynamic characteristics on PEM fuel cell cathode gas diffusion layer with gradient pore size distribution," Renewable Energy, Elsevier, vol. 178(C), pages 864-874.
    20. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Xu, Huachi & Chen, Dongfang & Huang, Shangwei, 2017. "Novel approach to determine cathode two-phase-flow pressure drop of proton exchange membrane fuel cell and its application on water management," Applied Energy, Elsevier, vol. 190(C), pages 713-724.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:663-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.