IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i6p1334-1345.html
   My bibliography  Save this article

Three-dimensional computational fluid dynamics model of a tubular-shaped PEM fuel cell

Author

Listed:
  • Sadiq Al-Baghdadi, Maher A.R.

Abstract

A full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena in a PEM fuel cell: convective and diffusive heat and mass transfer, electrode kinetics, and potential fields. In addition to the tubular-shaped geometry, the model feature an algorithm that allows for more realistic representation of the local activation overpotentials which leads to improved prediction of the local current density distribution. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented. The model is shown to be able to understand the many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally.

Suggested Citation

  • Sadiq Al-Baghdadi, Maher A.R., 2008. "Three-dimensional computational fluid dynamics model of a tubular-shaped PEM fuel cell," Renewable Energy, Elsevier, vol. 33(6), pages 1334-1345.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:6:p:1334-1345
    DOI: 10.1016/j.renene.2007.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107002339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Diankai & Peng, Linfa & Yi, Peiyun & Lehnert, Werner & Lai, Xinmin, 2021. "Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Jian, Qi-fei & Ma, Guang-qing & Qiu, Xiao-liang, 2014. "Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field," Renewable Energy, Elsevier, vol. 62(C), pages 129-136.
    3. Solati, Ali & Nasiri, Behzad & Mohammadi-Ahmar, Akbar & Mohammadi, Kamyar & Safari, Amir Hossein, 2019. "Numerical investigation of the effect of different layers configurations on the performance of radial PEM fuel cells," Renewable Energy, Elsevier, vol. 143(C), pages 1877-1889.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:6:p:1334-1345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.