IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v152y2021ics1364032121008996.html
   My bibliography  Save this article

Hydropower expansion planning in Brazil - Environmental improvements

Author

Listed:
  • Raupp, I.
  • Costa, F.

Abstract

One of the earliest stages of the electric sector expansion planning in Brazil is the Hydropower Inventory Studies, when alternatives for the exploitation of the river basin hydropower potential should be studied to select the one with the best energetic, economic and socio-environmental balance. Aiming the sustainable development of hydropower plants in environmentally sensitive areas, emphasizing environmental conservation, a more sustainable hydropower plant concept was developed. Therefore, since this benefit is not accounted in the existing positive socio-environmental impact index and to continue improving the Hydropower Inventory Studies, this article aims to propose a new criterion in the selection of the best alternative associated to the environmental benefits of this new concept of hydropower plants. The article also presents a study case in order to exemplify the applicability and consideration of this new index to choose the best alternative.

Suggested Citation

  • Raupp, I. & Costa, F., 2021. "Hydropower expansion planning in Brazil - Environmental improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121008996
    DOI: 10.1016/j.rser.2021.111623
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121008996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. dos Santos, Marco Aurélio & Damázio, Jorge Machado & Rogério, Josiclea Pereira & Amorim, Marcelo Andrade & Medeiros, Alexandre Mollica & Abreu, Juliano Lucas Souza & Maceira, Maria Elvira Pineiro & Me, 2017. "Estimates of GHG emissions by hydroelectric reservoirs: The Brazilian case," Energy, Elsevier, vol. 133(C), pages 99-107.
    2. Bartle, Alison, 2002. "Hydropower potential and development activities," Energy Policy, Elsevier, vol. 30(14), pages 1231-1239, November.
    3. Mayeda, A.M. & Boyd, A.D., 2020. "Factors influencing public perceptions of hydropower projects: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    4. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, April.
    5. P Linares & C Romero, 2000. "A multiple criteria decision making approach for electricity planning in Spain: economic versus environmental objectives," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(6), pages 736-743, June.
    6. Løken, Espen, 2007. "Use of multicriteria decision analysis methods for energy planning problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1584-1595, September.
    7. Danae Diakoulaki & Carlos Henggeler Antunes & António Gomes Martins, 2005. "MCDA and Energy Planning," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 859-890, Springer.
    8. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    9. Theodorou, Savvas & Florides, Georgios & Tassou, Savvas, 2010. "The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus, A review," Energy Policy, Elsevier, vol. 38(12), pages 7783-7792, December.
    10. Frey, Gary W. & Linke, Deborah M., 2002. "Hydropower as a renewable and sustainable energy resource meeting global energy challenges in a reasonable way," Energy Policy, Elsevier, vol. 30(14), pages 1261-1265, November.
    11. Oud, Engelbertus, 2002. "The evolving context for hydropower development," Energy Policy, Elsevier, vol. 30(14), pages 1215-1223, November.
    12. Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santos, Igor Renan Braga dos & Tiago Filho, Geraldo Lúcio & Vasconcellos, Bruna Tayla Cabral de & Souza Júnior, Oswaldo Honorato & Santos, Ivan Felipe Silva dos, 2022. "Energy and economic study of the increased energy production of cascaded hydroelectric plants due to the heightening of the upstream reservoir: A case study in Cipó-Rio das Antas dam," Renewable Energy, Elsevier, vol. 198(C), pages 228-245.
    2. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Jurasz, Jakub & Zhang, Yi & Lu, Jia, 2023. "Exploring the transition role of cascade hydropower in 100% decarbonized energy systems," Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    2. J. Cabello & M. Luque & F. Miguel & A. Ruiz & F. Ruiz, 2014. "A multiobjective interactive approach to determine the optimal electricity mix in Andalucía (Spain)," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 109-127, April.
    3. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    4. Manley, Dawn K. & Hines, Valerie A. & Jordan, Matthew W. & Stoltz, Ronald E., 2013. "A survey of energy policy priorities in the United States: Energy supply security, economics, and the environment," Energy Policy, Elsevier, vol. 60(C), pages 687-696.
    5. Heinrich, G. & Basson, L. & Cohen, B. & Howells, M. & Petrie, J., 2007. "Ranking and selection of power expansion alternatives for multiple objectives under uncertainty," Energy, Elsevier, vol. 32(12), pages 2350-2369.
    6. Sola, Antonio Vanderley Herrero & Mota, Caroline Maria de Miranda & Kovaleski, João Luiz, 2011. "A model for improving energy efficiency in industrial motor system using multicriteria analysis," Energy Policy, Elsevier, vol. 39(6), pages 3645-3654, June.
    7. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    8. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    9. Cavallaro, Fausto, 2010. "A comparative assessment of thin-film photovoltaic production processes using the ELECTRE III method," Energy Policy, Elsevier, vol. 38(1), pages 463-474, January.
    10. Mavrotas, George & Diakoulaki, Danae & Florios, Kostas & Georgiou, Paraskevas, 2008. "A mathematical programming framework for energy planning in services' sector buildings under uncertainty in load demand: The case of a hospital in Athens," Energy Policy, Elsevier, vol. 36(7), pages 2415-2429, July.
    11. Urošević, Branka Gvozdenac & Marinović, Budimirka, 2021. "Ranking construction of small hydro power plants using multi-criteria decision analysis," Renewable Energy, Elsevier, vol. 172(C), pages 1174-1183.
    12. Doukas, Haris, 2013. "Modelling of linguistic variables in multicriteria energy policy support," European Journal of Operational Research, Elsevier, vol. 227(2), pages 227-238.
    13. Grujić, Miodrag & Ivezić, Dejan & Živković, Marija, 2014. "Application of multi-criteria decision-making model for choice of the optimal solution for meeting heat demand in the centralized supply system in Belgrade," Energy, Elsevier, vol. 67(C), pages 341-350.
    14. Yuksek, Omer & Komurcu, Murat Ihsan & Yuksel, Ibrahim & Kaygusuz, Kamil, 2006. "The role of hydropower in meeting Turkey's electric energy demand," Energy Policy, Elsevier, vol. 34(17), pages 3093-3103, November.
    15. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    16. Haurant, P. & Oberti, P. & Muselli, M., 2011. "Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: A real case study using the ELECTRE outranking framework," Energy Policy, Elsevier, vol. 39(2), pages 676-688, February.
    17. Sharma, Shailesh & Waldman, John & Afshari, Shahab & Fekete, Balazs, 2019. "Status, trends and significance of American hydropower in the changing energy landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 112-122.
    18. Tsoutsos, Theocharis & Drandaki, Maria & Frantzeskaki, Niki & Iosifidis, Eleftherios & Kiosses, Ioannis, 2009. "Sustainable energy planning by using multi-criteria analysis application in the island of Crete," Energy Policy, Elsevier, vol. 37(5), pages 1587-1600, May.
    19. Jovanovic, Marina & Turanjanin, Valentina & Bakic, Vukman & Pezo, Milada & Vucicevic, Biljana, 2011. "Sustainability estimation of energy system options that use gas and renewable resources for domestic hot water production," Energy, Elsevier, vol. 36(4), pages 2169-2175.
    20. Stevovic, Svetlana & Milovanovic, Zorica & Stamatovic, Milan, 2015. "Sustainable model of hydro power development—Drina river case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 363-371.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121008996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.