IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v151y2021ics1364032121008546.html
   My bibliography  Save this article

An economic overview of Populus spp. in Short Rotation Coppice systems under Mediterranean conditions: An assessment tool for decision-making

Author

Listed:
  • Fuertes, A.
  • Oliveira, N.
  • Cañellas, I.
  • Sixto, H.
  • Rodríguez-Soalleiro, R.

Abstract

Poplar Short Rotation Coppices can provide lignocellulosic raw material, promote employment in rural areas, contribute to achieving a low carbon bioeconomy and supply environmental benefits. Nevertheless, the economic feasibility of these plantations is a matter of concern and hampers the expansion of commercial initiatives. In this regard, this work aims to identify the most critical cost factors of poplar plantations under Mediterranean conditions. Data from an extensive network located at 30 different sites were used, in particular, detailed cost data for 2 rotations was available for 6 sites within the network. This study evaluates the critical factors that affect profitability, analysing the influence of the discount rate and biomass price under two productive scenarios derived from the network and evaluated as green biomass yield for the first rotation: Baseline (30.56 Mg ha−1 yr−1) and an Optimum (56.52 Mg ha−1 yr−1). Net Present Value after 12 years (4 rotations of 3 years each), ranges from −1105.54 € ha−1 (Baseline) to 9620.30 € ha−1 (Optimum). According to the findings of this study, profitability of poplar plantations will be achieved by ensuring optimum productivity, through an increase in current market prices (40 € Mg-1) or by valuing the ecosystem services, which are not currently quantified. Sensitivity analyses were performed for the most critical cost factors: land rent (31.88 %), irrigation (16.61 %), and cut-and-chip harvesting (11.87 %), revealing that the influence of the former factor was decisive. Management diagrams that combine the discount rate, yield and biomass price are provided as tools for decision makers.

Suggested Citation

  • Fuertes, A. & Oliveira, N. & Cañellas, I. & Sixto, H. & Rodríguez-Soalleiro, R., 2021. "An economic overview of Populus spp. in Short Rotation Coppice systems under Mediterranean conditions: An assessment tool for decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008546
    DOI: 10.1016/j.rser.2021.111577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121008546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vanbeveren, Stefan P.P. & Spinelli, Raffaele & Eisenbies, Mark & Schweier, Janine & Mola-Yudego, Blas & Magagnotti, Natascia & Acuna, Mauricio & Dimitriou, Ioannis & Ceulemans, Reinhart, 2017. "Mechanised harvesting of short-rotation coppices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 90-104.
    2. Hauk, Sebastian & Knoke, Thomas & Wittkopf, Stefan, 2014. "Economic evaluation of short rotation coppice systems for energy from biomass—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 435-448.
    3. Budzianowski, Wojciech M., 2017. "High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 793-804.
    4. Gasol, Carles M. & Brun, Filippo & Mosso, Angela & Rieradevall, Joan & Gabarrell, Xavier, 2010. "Economic assessment and comparison of acacia energy crop with annual traditional crops in Southern Europe," Energy Policy, Elsevier, vol. 38(1), pages 592-597, January.
    5. Testa, Riccardo & Di Trapani, Anna Maria & Foderà, Mario & Sgroi, Filippo & Tudisca, Salvatore, 2014. "Economic evaluation of introduction of poplar as biomass crop in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 775-780.
    6. Pra, Alex & Masiero, Mauro & Barreiro, Susana & Tomé, Margarida & Martinez De Arano, Inazio & Orradre, Gabriel & Onaindia, Aitor & Brotto, Lucio & Pettenella, Davide, 2019. "Forest plantations in Southwestern Europe: A comparative trend analysis on investment returns, markets and policies," Forest Policy and Economics, Elsevier, vol. 109(C).
    7. Benoît A. Delbecq & Todd H. Kuethe & Allison M. Borchers, 2014. "Identifying the Extent of the Urban Fringe and Its Impact on Agricultural Land Values," Land Economics, University of Wisconsin Press, vol. 90(4), pages 587-600.
    8. Gasol, Carles M. & Martínez, Sergio & Rigola, Miquel & Rieradevall, Joan & Anton, Assumpció & Carrasco, Juan & Ciria, Pilar & Gabarrell, Xavier, 2009. "Feasibility assessment of poplar bioenergy systems in the Southern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 801-812, May.
    9. Spinelli, Raffaele & Magagnotti, Natascia, 2011. "The effects of introducing modern technology on the financial, labour and energy performance of forest operations in the Italian Alps," Forest Policy and Economics, Elsevier, vol. 13(7), pages 520-524, September.
    10. Soliño, Mario & Oviedo, José L. & Caparrós, Alejandro, 2018. "Are forest landowners ready for woody energy crops? Preferences for afforestation programs in Southern Spain," Energy Economics, Elsevier, vol. 73(C), pages 239-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Králík, T. & Knápek, J. & Vávrová, K. & Outrata, D. & Romportl, D. & Horák, M. & Jandera, J., 2023. "Ecosystem services and economic competitiveness of perennial energy crops in the modelling of biomass potential – A case study of the Czech Republic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Jaafari, Abolfazl, 2023. "Mapping high poplar growth areas for bioenergy cultivation: A swarm-optimized approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sgroi, Filippo & Di Trapani, Anna Maria & Foderà, Mario & Testa, Riccardo & Tudisca, Salvatore, 2015. "Economic assessment of Eucalyptus (spp.) for biomass production as alternative crop in Southern Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 614-619.
    2. Testa, Riccardo & Foderà, Mario & Di Trapani, Anna Maria & Tudisca, Salvatore & Sgroi, Filippo, 2016. "Giant reed as energy crop for Southern Italy: An economic feasibility study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 558-564.
    3. Testa, Riccardo & Di Trapani, Anna Maria & Foderà, Mario & Sgroi, Filippo & Tudisca, Salvatore, 2014. "Economic evaluation of introduction of poplar as biomass crop in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 775-780.
    4. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    5. Ralf Pecenka & Hannes Lenz & Simeon Olatayo Jekayinfa & Thomas Hoffmann, 2020. "Influence of Tree Species, Harvesting Method and Storage on Energy Demand and Wood Chip Quality When Chipping Poplar, Willow and Black Locust," Agriculture, MDPI, vol. 10(4), pages 1-15, April.
    6. Vanbeveren, Stefan P.P. & Spinelli, Raffaele & Eisenbies, Mark & Schweier, Janine & Mola-Yudego, Blas & Magagnotti, Natascia & Acuna, Mauricio & Dimitriou, Ioannis & Ceulemans, Reinhart, 2017. "Mechanised harvesting of short-rotation coppices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 90-104.
    7. Krystyna Kurowska & Renata Marks-Bielska & Stanisław Bielski & Audrius Aleknavičius & Cezary Kowalczyk, 2020. "Geographic Information Systems and the Sustainable Development of Rural Areas," Land, MDPI, vol. 10(1), pages 1-18, December.
    8. Hauk, Sebastian & Knoke, Thomas & Wittkopf, Stefan, 2014. "Economic evaluation of short rotation coppice systems for energy from biomass—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 435-448.
    9. Pulighe, Giuseppe & Bonati, Guido & Colangeli, Marco & Morese, Maria Michela & Traverso, Lorenzo & Lupia, Flavio & Khawaja, Cosette & Janssen, Rainer & Fava, Francesco, 2019. "Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 58-70.
    10. Rössert, Sebastian & Gosling, Elizabeth & Gandorfer, Markus & Knoke, Thomas, 2022. "Woodchips or potato chips? How enhancing soil carbon and reducing chemical inputs influence the allocation of cropland," Agricultural Systems, Elsevier, vol. 198(C).
    11. Kumari, Rajni & Kumar, Manish & Vivekanand, V. & Pareek, Nidhi, 2023. "Chitin biorefinery: A narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    12. Salvatore Digiesi & Giovanni Mummolo & Micaela Vitti, 2022. "Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model," Energies, MDPI, vol. 15(9), pages 1-21, May.
    13. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    14. Czyżewski, Bazyli & Polcyn, Jan, 2016. "Application of perpetual rent model to valorisation of agricultural land," Problems of Agricultural Economics / Zagadnienia Ekonomiki Rolnej 252638, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
    15. Yang Yi & Mingchang Shi & Jialin Liu & Chen Zhang & Xiaoding Yi & Sha Li & Chunyang Chen & Liangzhao Lin, 2022. "Spatial Distribution of Precise Suitability of Plantation: A Case Study of Main Coniferous Forests in Hubei Province, China," Land, MDPI, vol. 11(5), pages 1-19, May.
    16. Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
    17. Abbas Mardani & Dalia Streimikiene & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Mehrbakhsh Nilashi & Ahmad Jusoh & Habib Zare, 2017. "Application of Structural Equation Modeling (SEM) to Solve Environmental Sustainability Problems: A Comprehensive Review and Meta-Analysis," Sustainability, MDPI, vol. 9(10), pages 1-65, October.
    18. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    20. Yu-Hui Chen & Chun-Lin Lee & Guan-Rui Chen & Chiung-Hsin Wang & Ya-Hui Chen, 2018. "Factors Causing Farmland Price-Value Distortion and Their Implications for Peri-Urban Growth Management," Sustainability, MDPI, vol. 10(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.