IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i8p2182-2188.html
   My bibliography  Save this article

Improving the performance of a Seawater Greenhouse desalination system by assessment of simulation models for different condensers

Author

Listed:
  • Mahmoudi, Hacene
  • Spahis, Nawel
  • Abdul-Wahab, Sabah A.
  • Sablani, Shyam S.
  • Goosen, Mattheus F.A.

Abstract

The main aim of this paper was the development of a mathematical model for a new proposed passive condenser in order to enhance the performance of a humidification-dehumidification Seawater Greenhouse desalination system. Seawater Greenhouse desalination is used to create a cool environment and at the same time to produce fresh water for irrigation of crops grown inside the unit. The condenser in particular is currently one of the main bottlenecks in the commercialization of the technology. In addition to the current pump driven condenser, two new designs were considered: a passive cooling system with a condenser immersed in a water basin, and an external passive condenser connected to a basin of water placed on top of the cooling unit. The simulated condensate values for the proposed passive cooling condenser were compared with that of the actual measured values of the installed condenser. Preliminary results suggest that the passive condenser has a much greater water production capacity than the existing pump driven system. While the model for the proposed system still needs to be validated experimentally the initial study indicates that the passive containment cooling system is a promising improvement in the further development of greenhouse desalination.

Suggested Citation

  • Mahmoudi, Hacene & Spahis, Nawel & Abdul-Wahab, Sabah A. & Sablani, Shyam S. & Goosen, Mattheus F.A., 2010. "Improving the performance of a Seawater Greenhouse desalination system by assessment of simulation models for different condensers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2182-2188, October.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:8:p:2182-2188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00086-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoudi, Hacene & Spahis, Nawel & Goosen, Mattheus F. & Ghaffour, Noreddine & Drouiche, Nadjib & Ouagued, Abdellah, 2010. "Application of geothermal energy for heating and fresh water production in a brackish water greenhouse desalination unit: A case study from Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 512-517, January.
    2. Mahmoudi, Hacene & Spahis, Nawel & Goosen, Mattheus. F. & Sablani, Shyam & Abdul-wahab, Sabah. A. & Ghaffour, Noreddine & Drouiche, Nadjib, 2009. "Assessment of wind energy to power solar brackish water greenhouse desalination units: A case study from Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2149-2155, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farrell, Eanna & Hassan, Mohamed I. & Tufa, Ramato A. & Tuomiranta, Arttu & Avci, Ahmet H. & Politano, Antonio & Curcio, Efrem & Arafat, Hassan A., 2017. "Reverse electrodialysis powered greenhouse concept for water- and energy-self-sufficient agriculture," Applied Energy, Elsevier, vol. 187(C), pages 390-409.
    2. Mohammad Akrami & Alaa H. Salah & Akbar A. Javadi & Hassan E.S. Fath & Matthew J. Hassanein & Raziyeh Farmani & Mahdieh Dibaj & Abdelazim Negm, 2020. "Towards a Sustainable Greenhouse: Review of Trends and Emerging Practices in Analysing Greenhouse Ventilation Requirements to Sustain Maximum Agricultural Yield," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    3. Al-Ismaili, Abdulrahim M. & Jayasuriya, Hemanatha, 2016. "Seawater greenhouse in Oman: A sustainable technique for freshwater conservation and production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 653-664.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Ismaili, Abdulrahim M. & Jayasuriya, Hemanatha, 2016. "Seawater greenhouse in Oman: A sustainable technique for freshwater conservation and production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 653-664.
    2. Mattheus Goosen & Hacene Mahmoudi & Noreddine Ghaffour, 2010. "Water Desalination Using Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-20, August.
    3. Trumpy, Eugenio & Bertani, Ruggero & Manzella, Adele & Sander, Marietta, 2015. "The web-oriented framework of the world geothermal production database: A business intelligence platform for wide data distribution and analysis," Renewable Energy, Elsevier, vol. 74(C), pages 379-389.
    4. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    5. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    6. Ucar, Aynur & Balo, Figen, 2010. "Assessment of wind power potential for turbine installation in coastal areas of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1901-1912, September.
    7. Hatti, M. & Meharrar, A. & Tioursi, M., 2011. "Power management strategy in the alternative energy photovoltaic/PEM Fuel Cell hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5104-5110.
    8. Hall, Andrew & Scott, John Ashley & Shang, Helen, 2011. "Geothermal energy recovery from underground mines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 916-924, February.
    9. Dehmas, Djamila Abdeslame & Kherba, Nabila & Hacene, Fouad Boukli & Merzouk, Nachida Kasbadji & Merzouk, Mustapha & Mahmoudi, Hacene & Goosen, Mattheus F.A., 2011. "On the use of wind energy to power reverse osmosis desalination plant: A case study from Ténès (Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 956-963, February.
    10. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    11. Zahia Tigrine & Hanene Aburideh & Djamila Zioui & Sarra Hout & Naima Sahraoui & Yasmine Benchoubane & Amina Izem & Djilali Tassalit & Fatma Zohra Yahiaoui & Mohamed Khateb & Nadjib Drouiche & Seif El , 2023. "Feasibility Study of a Reverse Osmosis Desalination Unit Powered by Photovoltaic Panels for a Sustainable Water Supply in Algeria," Sustainability, MDPI, vol. 15(19), pages 1-23, September.
    12. Ghaffour, N. & Reddy, V.K. & Abu-Arabi, M., 2011. "Technology development and application of solar energy in desalination: MEDRC contribution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4410-4415.
    13. Amarouche, Khalid & Akpınar, Adem & Bachari, Nour El Islam & Houma, Fouzia, 2020. "Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast," Renewable Energy, Elsevier, vol. 153(C), pages 840-860.
    14. Mahmoudi, Hacene & Spahis, Nawel & Goosen, Mattheus F. & Ghaffour, Noreddine & Drouiche, Nadjib & Ouagued, Abdellah, 2010. "Application of geothermal energy for heating and fresh water production in a brackish water greenhouse desalination unit: A case study from Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 512-517, January.
    15. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    16. Ghaffarpour, Reza & Mozafari, Babak & Ranjbar, Ali Mohammad & Torabi, Taghi, 2018. "Resilience oriented water and energy hub scheduling considering maintenance constraint," Energy, Elsevier, vol. 158(C), pages 1092-1104.
    17. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    18. Almaktar, Mohamed & Shaaban, Mohamed, 2021. "Prospects of renewable energy as a non-rivalry energy alternative in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
    20. Sagar Shelare & Ravinder Kumar & Trupti Gajbhiye & Sumit Kanchan, 2023. "Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges," Energies, MDPI, vol. 16(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:8:p:2182-2188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.