IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v33y2005i14p1797-1805.html
   My bibliography  Save this article

Environmental impacts and benefits of regional power grid interconnections for China

Author

Listed:
  • Zhu, Fahua
  • Zheng, Youfei
  • Guo, Xulin
  • Wang, Sheng

Abstract

No abstract is available for this item.

Suggested Citation

  • Zhu, Fahua & Zheng, Youfei & Guo, Xulin & Wang, Sheng, 2005. "Environmental impacts and benefits of regional power grid interconnections for China," Energy Policy, Elsevier, vol. 33(14), pages 1797-1805, September.
  • Handle: RePEc:eee:enepol:v:33:y:2005:i:14:p:1797-1805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(04)00056-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Streets, D.G., 2003. "Environmental benefits of electricity grid interconnections in Northeast Asia," Energy, Elsevier, vol. 28(8), pages 789-807.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo, Zeng & Shaojie, Ouyang & Jianhua, Zhang & Hui, Shi & Geng, Wu & Ming, Zeng, 2015. "An analysis of previous blackouts in the world: Lessons for China׳s power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1151-1163.
    2. Wang, Yongpei & Yan, Qing & Yang, Jieru & Komonpipat, Supak & Zhang, Qian, 2024. "Can inter-provincial transmission reduce regional carbon emissions? Evidence from China," Energy Policy, Elsevier, vol. 184(C).
    3. Su, Shenshen & Fang, Xuekun & Zhao, Jinyang & Hu, Jianxin, 2017. "Spatiotemporal characteristics of consumption based CO2 emissions from China’s power sector," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 156-163.
    4. Zha, Donglan & Ding, Ning, 2014. "Elasticities of substitution between energy and non-energy inputs in China power sector," Economic Modelling, Elsevier, vol. 38(C), pages 564-571.
    5. Zhou, Guanghui & Ou, Xunmin & Zhang, Xiliang, 2013. "Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions," Energy Policy, Elsevier, vol. 59(C), pages 875-884.
    6. Taro Ohdoko & Satoru Komatsu & Shinji Kaneko, 2013. "Residential preferences for stable electricity supply and a reduction in air pollution risk: a benefit transfer study using choice modeling in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(3), pages 309-328, July.
    7. Guo, Ruipeng & Zhu, Xiaojie & Chen, Bin & Yue, Yunli, 2016. "Ecological network analysis of the virtual water network within China’s electric power system during 2007–2012," Applied Energy, Elsevier, vol. 168(C), pages 110-121.
    8. Kim, Hyo-Jin & Lim, Seul-Ye & Yoo, Seung-Hoon, 2017. "Is the Korean public willing to pay for a decentralized generation source? The case of natural gas-based combined heat and power," Energy Policy, Elsevier, vol. 102(C), pages 125-131.
    9. Lindner, Soeren & Liu, Zhu & Guan, Dabo & Geng, Yong & Li, Xin, 2013. "CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 164-172.
    10. Jinying Li & Jiaming Xu & Xin Tan, 2018. "Dynamic Comprehensive Benefit Evaluation of the Transnational Power Grid Interconnection Project Based on Combination Weighting and TOPSIS Grey Projection Method," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    11. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Gui, Shusen & Duan, Ye & Jiang, Bo & Kong, Xue, 2020. "Optimal way to achieve renewable portfolio standard policy goals from the electricity generation, transmission, and trading perspectives in southern China," Energy Policy, Elsevier, vol. 139(C).
    12. Jorge, Raquel S. & Hertwich, Edgar G., 2013. "Environmental evaluation of power transmission in Norway," Applied Energy, Elsevier, vol. 101(C), pages 513-520.
    13. Cherry, Christopher R. & Weinert, Jonathan X. & Yang, Xinmiao, 2009. "Comparative Environmental Impacts of Electric Bikes in China," Institute of Transportation Studies, Working Paper Series qt16k918sh, Institute of Transportation Studies, UC Davis.
    14. Li Ma, 2021. "Inter-Provincial Power Transmission and Its Embodied Carbon Flow in China: Uneven Green Energy Transition Road to East and West," Energies, MDPI, vol. 15(1), pages 1-17, December.
    15. Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
    16. Meng, Lei & Guo, Ju'e & Chai, Jian & Zhang, Zengkai, 2011. "China's regional CO2 emissions: Characteristics, inter-regional transfer and emission reduction policies," Energy Policy, Elsevier, vol. 39(10), pages 6136-6144, October.
    17. Maria Jesus Herrerias and Eric Girardin, 2013. "Seasonal Patterns of Energy in China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    18. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
    19. Yunfei An & Dequn Zhou & Qunwei Wang, 2022. "Carbon emission reduction potential and its influencing factors in China’s coal-fired power industry: a cost optimization and decomposition analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3619-3639, March.
    20. Chen, G. & Chen, B. & Zhou, H. & Dai, P., 2013. "Life cycle carbon emission flow analysis for electricity supply system: A case study of China," Energy Policy, Elsevier, vol. 61(C), pages 1276-1284.
    21. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    22. Cherry, Christopher & Weinert, Jonathan & Ma, Chaktan, 2007. "The Environmental Impacts of Electric Bikes in Chinese Cities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4zg3b4d6, Institute of Transportation Studies, UC Berkeley.
    23. Wang, Yongpei & Yan, Weilong & Komonpipat, Supak, 2019. "How does the capacity utilization of thermal power generation affect pollutant emissions? Evidence from the panel data of China's provinces," Energy Policy, Elsevier, vol. 132(C), pages 440-451.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otsuki, Takashi & Mohd Isa, Aishah Binti & Samuelson, Ralph D., 2016. "Electric power grid interconnections in Northeast Asia: A quantitative analysis of opportunities and challenges," Energy Policy, Elsevier, vol. 89(C), pages 311-329.
    2. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    3. Williams, J.H. & Ghanadan, R., 2006. "Electricity reform in developing and transition countries: A reappraisal," Energy, Elsevier, vol. 31(6), pages 815-844.
    4. Chamorro, José M. & Abadie, Luis M. & de Neufville, Richard & Ilić, Marija, 2012. "Market-based valuation of transmission network expansion. A heuristic application in GB," Energy, Elsevier, vol. 44(1), pages 302-320.
    5. Kanagawa, Makoto & Nakata, Toshihiko, 2006. "Analysis of the impact of electricity grid interconnection between Korea and Japan--Feasibility study for energy network in Northeast Asia," Energy Policy, Elsevier, vol. 34(9), pages 1015-1025, June.
    6. Chen, Zhichao & Wang, Zhenwang & Li, Zhengqi & Xie, Yiquan & Ti, Shuguang & Zhu, Qunyi, 2014. "Experimental investigation into pulverized-coal combustion performance and NO formation using sub-stoichiometric ratios," Energy, Elsevier, vol. 73(C), pages 844-855.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:33:y:2005:i:14:p:1797-1805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.