IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37272-8.html
   My bibliography  Save this article

Cable bacteria with electric connection to oxygen attract flocks of diverse bacteria

Author

Listed:
  • Jesper J. Bjerg

    (Department of Biology, Aarhus University
    University of Antwerp)

  • Jamie J. M. Lustermans

    (Department of Biology, Aarhus University)

  • Ian P. G. Marshall

    (Department of Biology, Aarhus University)

  • Anna J. Mueller

    (University of Vienna
    University of Vienna)

  • Signe Brokjær

    (Department of Biology, Aarhus University)

  • Casper A. Thorup

    (Department of Biology, Aarhus University)

  • Paula Tataru

    (Aarhus University)

  • Markus Schmid

    (University of Vienna)

  • Michael Wagner

    (University of Vienna
    Aalborg University)

  • Lars Peter Nielsen

    (Department of Biology, Aarhus University)

  • Andreas Schramm

    (Department of Biology, Aarhus University)

Abstract

Cable bacteria are centimeter-long filamentous bacteria that conduct electrons via internal wires, thus coupling sulfide oxidation in deeper, anoxic sediment with oxygen reduction in surface sediment. This activity induces geochemical changes in the sediment, and other bacterial groups appear to benefit from the electrical connection to oxygen. Here, we report that diverse bacteria swim in a tight flock around the anoxic part of oxygen-respiring cable bacteria and disperse immediately when the connection to oxygen is disrupted (by cutting the cable bacteria with a laser). Raman microscopy shows that flocking bacteria are more oxidized when closer to the cable bacteria, but physical contact seems to be rare and brief, which suggests potential transfer of electrons via unidentified soluble intermediates. Metagenomic analysis indicates that most of the flocking bacteria appear to be aerobes, including organotrophs, sulfide oxidizers, and possibly iron oxidizers, which might transfer electrons to cable bacteria for respiration. The association and close interaction with such diverse partners might explain how oxygen via cable bacteria can affect microbial communities and processes far into anoxic environments.

Suggested Citation

  • Jesper J. Bjerg & Jamie J. M. Lustermans & Ian P. G. Marshall & Anna J. Mueller & Signe Brokjær & Casper A. Thorup & Paula Tataru & Markus Schmid & Michael Wagner & Lars Peter Nielsen & Andreas Schram, 2023. "Cable bacteria with electric connection to oxygen attract flocks of diverse bacteria," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37272-8
    DOI: 10.1038/s41467-023-37272-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37272-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37272-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christian Pfeffer & Steffen Larsen & Jie Song & Mingdong Dong & Flemming Besenbacher & Rikke Louise Meyer & Kasper Urup Kjeldsen & Lars Schreiber & Yuri A. Gorby & Mohamed Y. El-Naggar & Kar Man Leung, 2012. "Filamentous bacteria transport electrons over centimetre distances," Nature, Nature, vol. 491(7423), pages 218-221, November.
    2. Lars Peter Nielsen & Nils Risgaard-Petersen & Henrik Fossing & Peter Bondo Christensen & Mikio Sayama, 2010. "Electric currents couple spatially separated biogeochemical processes in marine sediment," Nature, Nature, vol. 463(7284), pages 1071-1074, February.
    3. Vincent V. Scholz & Rainer U. Meckenstock & Lars Peter Nielsen & Nils Risgaard-Petersen, 2020. "Cable bacteria reduce methane emissions from rice-vegetated soils," Nature Communications, Nature, vol. 11(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Tabish Noori & Dayakar Thatikayala & Booki Min, 2022. "Bioelectrochemical Remediation for the Removal of Petroleum Hydrocarbon Contaminants in Soil," Energies, MDPI, vol. 15(22), pages 1-22, November.
    2. Cleuren, Bart & Proesmans, Karel, 2020. "Stochastic impedance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
    3. Yanting Zhang & Man Tong & Yuxi Lu & Fengyi Zhao & Peng Zhang & Zhenchen Wan & Ping Li & Songhu Yuan & Yanxin Wang & Andreas Kappler, 2024. "Directional long-distance electron transfer from reduced to oxidized zones in the subsurface," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Kataki, S. & Chatterjee, S. & Vairale, M.G. & Sharma, S. & Dwivedi, S.K. & Gupta, D.K., 2021. "Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Irfan, Muhammad & Zhou, Lei & Ji, Jia-Heng & Chen, Jing & Yuan, Shan & Liang, Tian-Tian & Liu, Jin-Feng & Yang, Shi-Zhong & Gu, Ji-Dong & Mu, Bo-Zhong, 2020. "Enhanced energy generation and altered biochemical pathways in an enrichment microbial consortium amended with natural iron minerals," Renewable Energy, Elsevier, vol. 159(C), pages 585-594.
    6. Rusyn, Iryna, 2021. "Role of microbial community and plant species in performance of plant microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. María José De La Fuente & Carlos Gallardo-Bustos & Rodrigo De la Iglesia & Ignacio T. Vargas, 2022. "Microbial Electrochemical Technologies for Sustainable Nitrogen Removal in Marine and Coastal Environments," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    8. Shuncun Zhang & Bo Chen & Junru Du & Tao Wang & Haixin Shi & Feng Wang, 2022. "Distribution, Assessment, and Source of Heavy Metals in Sediments of the Qinjiang River, China," IJERPH, MDPI, vol. 19(15), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37272-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.