IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i4p554-d790082.html
   My bibliography  Save this article

Wetland Construction, Restoration, and Integration: A Comparative Review

Author

Listed:
  • Douglas J. Spieles

    (McPhail Center for Environmental Studies, Denison University, Granville, OH 43023, USA)

Abstract

In response to the global loss and degradation of wetland ecosystems, extensive efforts have been made to reestablish wetland habitat and function in landscapes where they once existed. The reintroduction of wetland ecosystem services has largely occurred in two categories: constructed wetlands (CW) for wastewater treatment, and restored wetlands (RW) for the renewal or creation of multiple ecosystem services. This is the first review to compare the objectives, design, performance, and management of CW and RW, and to assess the status of efforts to combine CW and RW as Integrated Constructed Wetlands (ICW). These wetland systems are assessed for their ecological attributes and their relative contribution to ecosystem services. CW are designed to process a wide variety of wastewaters using surface, subsurface, or hybrid treatment systems. Designed and maintained within narrow hydrologic parameters, CW can be highly effective at contaminant transformation, remediation, and sequestration. The ecosystem services provided by CW are limited by their status as high-stress, successionally arrested systems with low landscape connectivity and an effective lifespan. RW are typically situated and designed for a greater degree of connection with regional ecosystems. After construction, revegetation, and early successional management, RW are intended as self-maintaining ecosystems. This affords RW a broader range of ecosystem services than CW, though RW system performance can be highly variable and subject to invasive species and landscape-level stressors. Where the spatial and biogeochemical contexts are favorable, ICW present the opportunity to couple CW and RW functions, thereby enhancing the replacement of wetland services on the landscape.

Suggested Citation

  • Douglas J. Spieles, 2022. "Wetland Construction, Restoration, and Integration: A Comparative Review," Land, MDPI, vol. 11(4), pages 1-21, April.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:554-:d:790082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/4/554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/4/554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qishe Yan & Yanyan Wang & Luyun Zhang & Biqing Zhu & Ruiqin Zhang, 2014. "Treatment of domestic wastewater using composite ecological system in Chinese rural area," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 17(5), pages 365-376.
    2. Everard, Mark & Harrington, Rory & McInnes, Robert J., 2012. "Facilitating implementation of landscape-scale water management: The integrated constructed wetland concept," Ecosystem Services, Elsevier, vol. 2(C), pages 27-37.
    3. Dai, Peichao & Zhang, Shaoliang & Gong, Yunlong & Zhou, Yuan & Hou, Huping, 2022. "A crowd-sourced valuation of recreational ecosystem services using mobile signal data applied to a restored wetland in China," Ecological Economics, Elsevier, vol. 192(C).
    4. Chengxiang Zhang & Li Wen & Yuyu Wang & Cunqi Liu & Yan Zhou & Guangchun Lei, 2020. "Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    5. Avellán, Tamara & Gremillion, Paul, 2019. "Constructed wetlands for resource recovery in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 42-57.
    6. Alexandros I. Stefanakis, 2019. "The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    7. Paula Meli & José María Rey Benayas & Patricia Balvanera & Miguel Martínez Ramos, 2014. "Restoration Enhances Wetland Biodiversity and Ecosystem Service Supply, but Results Are Context-Dependent: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    8. Turner, Katrine Grace & Anderson, Sharolyn & Gonzales-Chang, Mauricio & Costanza, Robert & Courville, Sasha & Dalgaard, Tommy & Dominati, Estelle & Kubiszewski, Ida & Ogilvy, Sue & Porfirio, Luciana &, 2016. "A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration," Ecological Modelling, Elsevier, vol. 319(C), pages 190-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajat K. Chakraborti & James S. Bays, 2023. "Constructed Wetlands Using Treated Membrane Concentrate for Coastal Wetland Restoration and the Renewal of Multiple Ecosystem Services," Land, MDPI, vol. 12(4), pages 1-22, April.
    2. Jiani Zhang & Xun Zhu & Ming Gao, 2022. "The Relationship between Habitat Diversity and Tourists’ Visual Preference in Urban Wetland Park," Land, MDPI, vol. 11(12), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anacleto Rizzo & Giulio Conte & Fabio Masi, 2021. "Adjusted Unit Value Transfer as a Tool for Raising Awareness on Ecosystem Services Provided by Constructed Wetlands for Water Pollution Control: An Italian Case Study," IJERPH, MDPI, vol. 18(4), pages 1-15, February.
    2. Yanqin Zhang & Xianli You & Shanjun Huang & Minhua Wang & Jianwen Dong, 2022. "Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands—A Bibliometric Analysis Based on CiteSpace," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    3. Stevo Lavrnić & Maribel Zapater Pereyra & Sandra Cristino & Domenico Cupido & Giovanni Lucchese & Maria Rosaria Pascale & Attilio Toscano & Maurizio Mancini, 2020. "The Potential Role of Hybrid Constructed Wetlands Treating University Wastewater—Experience from Northern Italy," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    4. Vasileios Takavakoglou & Eleanna Pana & Dimitris Skalkos, 2022. "Constructed Wetlands as Nature-Based Solutions in the Post-COVID Agri-Food Supply Chain: Challenges and Opportunities," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    5. Mahsa Mesgar & Diego Ramirez-Lovering & Mohamed El-Sioufi, 2021. "Tension, Conflict, and Negotiability of Land for Infrastructure Retrofit Practices in Informal Settlements," Land, MDPI, vol. 10(12), pages 1-15, November.
    6. Daniela Smiraglia & Luca Salvati & Gianluca Egidi & Rosanna Salvia & Antonio Giménez-Morera & Rares Halbac-Cotoara-Zamfir, 2021. "Toward a New Urban Cycle? A Closer Look to Sprawl, Demographic Transitions and the Environment in Europe," Land, MDPI, vol. 10(2), pages 1-14, January.
    7. Mohamed A. M. Abd Elbasit & Jasper Knight & Gang Liu & Majed M. Abu-Zreig & Rashid Hasaan, 2021. "Valuation of Ecosystem Services in South Africa, 2001–2019," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    8. Katia Ghezali & Nourredine Bentahar & Narcis Barsan & Valentin Nedeff & Emilian Moșneguțu, 2022. "Potential of Canna indica in Vertical Flow Constructed Wetlands for Heavy Metals and Nitrogen Removal from Algiers Refinery Wastewater," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
    9. Ahimbisibwe, Vianny & Zhunusova, Eliza & Kassa, Habtemariam & Günter, Sven, 2024. "Technical efficiency drivers of farmer-led restoration strategies, and how substantial is the unrealised potential for farm output?," Agricultural Systems, Elsevier, vol. 213(C).
    10. Nash Jett D. G. Reyes & Franz Kevin F. Geronimo & Heidi B. Guerra & Lee-Hyung Kim, 2023. "Bibliometric Analysis and Comprehensive Review of Stormwater Treatment Wetlands: Global Research Trends and Existing Knowledge Gaps," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    11. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    12. Cristina S. C. Calheiros & Alexandros I. Stefanakis, 2021. "Green Roofs Towards Circular and Resilient Cities," Circular Economy and Sustainability, Springer, vol. 1(1), pages 395-411, June.
    13. Joanna Sender & Danuta Urban & Monika Różańska-Boczula & Antoni Grzywna, 2021. "Long-Term Changes in Floristic Diversity as an Effect of Transforming the Lake into a Retention Reservoir," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    14. Paula Meli & Karen D Holl & José María Rey Benayas & Holly P Jones & Peter C Jones & Daniel Montoya & David Moreno Mateos, 2017. "A global review of past land use, climate, and active vs. passive restoration effects on forest recovery," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-17, February.
    15. Zhifang Wang & Yuqing Jian & Zhibin Huang & Salman Qureshi & Kexin Cheng & Zhuhui Bai & Qingwen Zhang, 2023. "Transforming Research on Recreational Ecosystem Services into Applications and Governance," Land, MDPI, vol. 12(2), pages 1-16, February.
    16. Wenbo Cai & Wei Jiang & Hongyu Du & Ruishan Chen & Yongli Cai, 2021. "Assessing Ecosystem Services Supply-Demand (Mis)Matches for Differential City Management in the Yangtze River Delta Urban Agglomeration," IJERPH, MDPI, vol. 18(15), pages 1-22, July.
    17. Chenxi Li & Zhihong Zong & Haichao Qie & Yingying Fang & Qiao Liu, 2023. "CiteSpace and Bibliometric Analysis of Published Research on Forest Ecosystem Services for the Period 2018–2022," Land, MDPI, vol. 12(4), pages 1-16, April.
    18. Yuqing Zhao & Zenglin Han & Xiaolu Yan & Xuezhe Wang, 2022. "Integrating Spatial Heterogeneity into an Analysis between Ecosystem Service Value and Its Driving Factors: A Case Study of Dalian, China," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    19. Lu Yang & Zhi Zhang & Weikang Zhang & Tong Zhang & Huan Meng & Hongwei Yan & Yue Shen & Zeqian Li & Xiaotian Ma, 2023. "Wetland Park Planning and Management Based on the Valuation of Ecosystem Services: A Case Study of the Tieling Lotus Lake National Wetland Park (LLNWP), China," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
    20. Erick Arturo Betanzo-Torres & María de los Ángeles Piñar-Álvarez & Celia Gabriela Sierra-Carmona & Luis Enrique García Santamaria & Cecilia-Irene Loeza-Mejía & José Luis Marín-Muñiz & Luis Carlos Sand, 2021. "Proposal of Ecotechnologies for Tilapia ( Oreochromis niloticus ) Production in Mexico: Economic, Environmental, and Social Implications," Sustainability, MDPI, vol. 13(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:554-:d:790082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.