IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v147y2021ics1364032121005219.html
   My bibliography  Save this article

Scalable pathways to net zero carbon in the UK higher education sector: A systematic review of smart energy systems in university campuses

Author

Listed:
  • Kourgiozou, Vasiliki
  • Commin, Andrew
  • Dowson, Mark
  • Rovas, Dimitrios
  • Mumovic, Dejan

Abstract

The following literature review sets out the state-of-the-art research relating to smart building principles and smart energy systems in UK higher education university campuses. The paper begins by discussing the carbon impact of the sector and the concept of ‘smart campuses' applied to the sector in the context of decarbonisation. Opportunities and challenges associated with integrating smart energy systems at the university campus from a policy and technical perspective are then discussed. This is followed by a review of building and campus-scale frameworks supporting a transition to smart energy campuses using the BPIE’ Smart Buildings' framework. The paper finds that the complexity of achieving net-zero carbon emissions for new and existing higher education buildings and energy systems can be addressed with the adoption of ‘smart building principles' and integrating 'smartness' into their energy systems. Several universities in the UK and worldwide are integrating smart services and Information and Communication Technologies (ICT) in their operations following the smart campus premise. At the building level, existing frameworks often create conceptual roadmaps for the smart building premise or propose technical implementation and assessment methods. At university campus scale, implementation typically comes through single-vector interventions, and only few examples exist that propose a multi-vector approach. Comparisons of the drivers and the decision-making process are made, with carbon and cost reduction being the most prominent from leveraging distributed energy generation. Therefore, this study identified the need for a comprehensive technical or policy framework to drive the uptake of the smart energy campus, aiming to bring together the holistic value of smart energy campuses.

Suggested Citation

  • Kourgiozou, Vasiliki & Commin, Andrew & Dowson, Mark & Rovas, Dimitrios & Mumovic, Dejan, 2021. "Scalable pathways to net zero carbon in the UK higher education sector: A systematic review of smart energy systems in university campuses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:rensus:v:147:y:2021:i:c:s1364032121005219
    DOI: 10.1016/j.rser.2021.111234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121005219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vu Ba Hau & Munir Husein & Il-Yop Chung & Dong-Jun Won & William Torre & Truong Nguyen, 2018. "Analyzing the Impact of Renewable Energy Incentives and Parameter Uncertainties on Financial Feasibility of a Campus Microgrid," Energies, MDPI, vol. 11(9), pages 1-24, September.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    3. Jung, Jaesung & Villaran, Michael, 2017. "Optimal planning and design of hybrid renewable energy systems for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 180-191.
    4. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    5. Gu, Yifan & Wang, Hongtao & Xu, Jin & Wang, Ying & Wang, Xin & Robinson, Zoe P. & Li, Fengting & Wu, Jiang & Tan, Jianguo & Zhi, Xing, 2019. "Quantification of interlinked environmental footprints on a sustainable university campus: A nexus analysis perspective," Applied Energy, Elsevier, vol. 246(C), pages 65-76.
    6. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    7. Khuram Pervez Amber & Muhammad Waqar Aslam & Anzar Mahmood & Anila Kousar & Muhammad Yamin Younis & Bilal Akbar & Ghulam Qadar Chaudhary & Syed Kashif Hussain, 2017. "Energy Consumption Forecasting for University Sector Buildings," Energies, MDPI, vol. 10(10), pages 1-18, October.
    8. Powell, Kody M. & Kim, Jong Suk & Cole, Wesley J. & Kapoor, Kriti & Mojica, Jose L. & Hedengren, John D. & Edgar, Thomas F., 2016. "Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market," Energy, Elsevier, vol. 113(C), pages 52-63.
    9. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.
    10. Xenias, Dimitrios & Axon, Colin J. & Whitmarsh, Lorraine & Connor, Peter M. & Balta-Ozkan, Nazmiye & Spence, Alexa, 2015. "UK smart grid development: An expert assessment of the benefits, pitfalls and functions," Renewable Energy, Elsevier, vol. 81(C), pages 89-102.
    11. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    12. Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
    13. Connor, Peter M. & Baker, Philip E. & Xenias, Dimitrios & Balta-Ozkan, Nazmiye & Axon, Colin J. & Cipcigan, Liana, 2014. "Policy and regulation for smart grids in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 269-286.
    14. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    15. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    16. Milad Mohammadalizadehkorde & Russell Weaver, 2018. "Universities as Models of Sustainable Energy-Consuming Communities? Review of Selected Literature," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    17. Hanna, Ryan & Ghonima, Mohamed & Kleissl, Jan & Tynan, George & Victor, David G., 2017. "Evaluating business models for microgrids: Interactions of technology and policy," Energy Policy, Elsevier, vol. 103(C), pages 47-61.
    18. Guerrieri, M. & La Gennusa, M. & Peri, G. & Rizzo, G. & Scaccianoce, G., 2019. "University campuses as small-scale models of cities: Quantitative assessment of a low carbon transition path," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "The Effects of Capital and Energy Subsidies on the Optimal Design of Microgrid Systems," Energies, MDPI, vol. 13(4), pages 1-23, February.
    20. Ning Wang & Weisheng Xu & Zhiyu Xu & Weihui Shao, 2018. "Peer-to-Peer Energy Trading among Microgrids with Multidimensional Willingness," Energies, MDPI, vol. 11(12), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak & Łukasz Baran & Tomasz Barcz & Przemysław Kołaczyński & Wojciech Suchecki, 2023. "Investing in Distributed Generation Technologies at Polish University Campuses during the Energy Transition Era," Energies, MDPI, vol. 16(12), pages 1-24, June.
    2. Lizhen Gao & Shidong Wang & Mingqiang Mao & Chunhui Liu & Tao Li, 2024. "Study on the Energy Consumption Characteristics and the Self-Sufficiency Rate of Rooftop Photovoltaic of University Campus Buildings," Energies, MDPI, vol. 17(14), pages 1-16, July.
    3. Khanam, Tahamina & Reiner, David M, 2022. "Evaluating gaps in knowledge, willingness and heating performance in individual preferences on household energy and climate policy: Evidence from the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Lingyu Wang & Xingyun Yan & Mingzhu Fang & Hua Song & Jie Hu, 2023. "A Systematic Design Framework for Zero Carbon Campuses: Investigating the Shanghai Jiao Tong University Fahua Campus Case," Sustainability, MDPI, vol. 15(10), pages 1-31, May.
    5. Amad Ali & Hafiz Abdul Muqeet & Tahir Khan & Asif Hussain & Muhammad Waseem & Kamran Ali Khan Niazi, 2023. "IoT-Enabled Campus Prosumer Microgrid Energy Management, Architecture, Storage Technologies, and Simulation Tools: A Comprehensive Study," Energies, MDPI, vol. 16(4), pages 1-19, February.
    6. Ciara O’Flynn & Valentine Seymour & James Crawshaw & Thomas Parrott & Catriona Reeby & S. Ravi P. Silva, 2021. "The Road to Net Zero: A Case Study of Innovative Technologies and Policy Changes Used at a Medium-Sized University to Achieve C zero by 2030," Sustainability, MDPI, vol. 13(17), pages 1-23, September.
    7. Alexandros Paspatis & Konstantinos Fiorentzis & Yiannis Katsigiannis & Emmanuel Karapidakis, 2022. "Smart Campus Microgrids towards a Sustainable Energy Transition—The Case Study of the Hellenic Mediterranean University in Crete," Mathematics, MDPI, vol. 10(7), pages 1-19, March.
    8. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    9. Davidson, Eleni & Schwartz, Yair & Williams, Joe & Mumovic, Dejan, 2024. "Resilience of the higher education sector to future climates: A systematic review of predicted building energy performance and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Nkweauseh Reginald Longfor & Jiarong Hu & You Li & Xuepeng Qian & Weisheng Zhou, 2023. "Scientometric Trends and Knowledge Gaps of Zero-Emission Campuses," Sustainability, MDPI, vol. 15(23), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamnatou, Chr. & Chemisana, D. & Cristofari, C., 2022. "Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment," Renewable Energy, Elsevier, vol. 185(C), pages 1376-1391.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    5. Hak-Ju Lee & Ba Hau Vu & Rehman Zafar & Sung-Wook Hwang & Il-Yop Chung, 2021. "Design Framework of a Stand-Alone Microgrid Considering Power System Performance and Economic Efficiency," Energies, MDPI, vol. 14(2), pages 1-28, January.
    6. Ford, Rebecca & Maidment, Chris & Vigurs, Carol & Fell, Michael J. & Morris, Madeleine, 2021. "Smart local energy systems (SLES): A framework for exploring transition, context, and impacts," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    7. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Hussain, Syed Asad & Razi, Faran & Hewage, Kasun & Sadiq, Rehan, 2023. "The perspective of energy poverty and 1st energy crisis of green transition," Energy, Elsevier, vol. 275(C).
    9. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    10. Md. Salman Islam & Gengyuan Liu & Duo Xu & Yu Chen & Hui Li & Caocao Chen, 2023. "University-Campus-Based Zero-Carbon Action Plans for Accelerating the Zero-Carbon City Transition," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    11. Tomasz Rokicki & Piotr Bórawski & Barbara Gradziuk & Piotr Gradziuk & Aldona Mrówczyńska-Kamińska & Joanna Kozak & Danuta Jolanta Guzal-Dec & Kamil Wojtczuk, 2021. "Differentiation and Changes of Household Electricity Prices in EU Countries," Energies, MDPI, vol. 14(21), pages 1-21, October.
    12. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    13. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    14. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Prinsloo, Gerro & Dobson, Robert & Mammoli, Andrea, 2018. "Synthesis of an intelligent rural village microgrid control strategy based on smartgrid multi-agent modelling and transactive energy management principles," Energy, Elsevier, vol. 147(C), pages 263-278.
    16. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).
    17. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    18. Bellocchi, Sara & De Falco, Marcello & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2019. "Opportunities for power-to-Gas and Power-to-liquid in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 175(C), pages 847-861.
    19. Meha, Drilon & Pfeifer, Antun & Sahiti, Naser & Rolph Schneider, Daniel & Duić, Neven, 2021. "Sustainable transition pathways with high penetration of variable renewable energy in the coal-based energy systems," Applied Energy, Elsevier, vol. 304(C).
    20. Cabrera, Pedro & Lund, Henrik & Carta, José A., 2018. "Smart renewable energy penetration strategies on islands: The case of Gran Canaria," Energy, Elsevier, vol. 162(C), pages 421-443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:147:y:2021:i:c:s1364032121005219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.