IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3535-d1438040.html
   My bibliography  Save this article

Study on the Energy Consumption Characteristics and the Self-Sufficiency Rate of Rooftop Photovoltaic of University Campus Buildings

Author

Listed:
  • Lizhen Gao

    (Lanzhou Heating Power Group Co., Ltd., Lanzhou 730020, China)

  • Shidong Wang

    (Gansu Institute of Architectural Design and Research Co., Ltd., Lanzhou 730000, China)

  • Mingqiang Mao

    (Gansu Institute of Architectural Design and Research Co., Ltd., Lanzhou 730000, China)

  • Chunhui Liu

    (Gansu Institute of Architectural Design and Research Co., Ltd., Lanzhou 730000, China)

  • Tao Li

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China)

Abstract

Campus buildings often face issues with high energy consumption, low efficiency, and significant carbon emissions, making the creation of a green, low-carbon campus urgent. Utilizing solar photovoltaics on rooftops can provide an effective power solution to address high energy consumption. This study focuses on a university campus, employing the DeST energy consumption simulation software to model the HVAC systems, electrical devices, and hot water loads of five typical buildings. It combines this with calculations of available rooftop areas to assess the potential for rooftop solar photovoltaics. The results confirm varying annual electricity consumption among the different buildings, which directly correlates with building size and operational schedules. Among the five building types, sports facilities and academic buildings have relatively high rooftop photovoltaic self-sufficiency rates, exceeding 60%, while the library has the lowest, under 20%. The entire university campus has an annual rooftop photovoltaic self-sufficiency rate of 35%, significantly addressing the issue of high energy consumption in university campuses. This research provides a theoretical basis for implementing rooftop photovoltaic systems to achieve campus energy savings.

Suggested Citation

  • Lizhen Gao & Shidong Wang & Mingqiang Mao & Chunhui Liu & Tao Li, 2024. "Study on the Energy Consumption Characteristics and the Self-Sufficiency Rate of Rooftop Photovoltaic of University Campus Buildings," Energies, MDPI, vol. 17(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3535-:d:1438040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kourgiozou, Vasiliki & Commin, Andrew & Dowson, Mark & Rovas, Dimitrios & Mumovic, Dejan, 2021. "Scalable pathways to net zero carbon in the UK higher education sector: A systematic review of smart energy systems in university campuses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Jie Yang & Baorui Cai & Jingyu Cao & Yunjie Wang & Huihan Yang & Ping Zhu, 2023. "Comprehensive Characterization of Energy Saving and Environmental Benefits of Campus Photovoltaic Buildings," Energies, MDPI, vol. 16(20), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuanhui Lin & Huiwen Cai & Sheng Zhao, 2024. "An Empirical Analysis of Carbon Emissions in Higher Education Institutions: A Case Study of Zhejiang Ocean University Using Emission Factor Methodology," Sustainability, MDPI, vol. 16(21), pages 1-18, October.
    2. Nkweauseh Reginald Longfor & Jiarong Hu & You Li & Xuepeng Qian & Weisheng Zhou, 2023. "Scientometric Trends and Knowledge Gaps of Zero-Emission Campuses," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
    3. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    4. Mosè Rossi & Lingkang Jin & Andrea Monforti Ferrario & Marialaura Di Somma & Amedeo Buonanno & Christina Papadimitriou & Andrei Morch & Giorgio Graditi & Gabriele Comodi, 2024. "Energy Hub and Micro-Energy Hub Architecture in Integrated Local Energy Communities: Enabling Technologies and Energy Planning Tools," Energies, MDPI, vol. 17(19), pages 1-50, September.
    5. Davidson, Eleni & Schwartz, Yair & Williams, Joe & Mumovic, Dejan, 2024. "Resilience of the higher education sector to future climates: A systematic review of predicted building energy performance and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak & Łukasz Baran & Tomasz Barcz & Przemysław Kołaczyński & Wojciech Suchecki, 2023. "Investing in Distributed Generation Technologies at Polish University Campuses during the Energy Transition Era," Energies, MDPI, vol. 16(12), pages 1-24, June.
    7. Amad Ali & Hafiz Abdul Muqeet & Tahir Khan & Asif Hussain & Muhammad Waseem & Kamran Ali Khan Niazi, 2023. "IoT-Enabled Campus Prosumer Microgrid Energy Management, Architecture, Storage Technologies, and Simulation Tools: A Comprehensive Study," Energies, MDPI, vol. 16(4), pages 1-19, February.
    8. Ciara O’Flynn & Valentine Seymour & James Crawshaw & Thomas Parrott & Catriona Reeby & S. Ravi P. Silva, 2021. "The Road to Net Zero: A Case Study of Innovative Technologies and Policy Changes Used at a Medium-Sized University to Achieve C zero by 2030," Sustainability, MDPI, vol. 13(17), pages 1-23, September.
    9. Lingyu Wang & Xingyun Yan & Mingzhu Fang & Hua Song & Jie Hu, 2023. "A Systematic Design Framework for Zero Carbon Campuses: Investigating the Shanghai Jiao Tong University Fahua Campus Case," Sustainability, MDPI, vol. 15(10), pages 1-31, May.
    10. Khanam, Tahamina & Reiner, David M, 2022. "Evaluating gaps in knowledge, willingness and heating performance in individual preferences on household energy and climate policy: Evidence from the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Alexandros Paspatis & Konstantinos Fiorentzis & Yiannis Katsigiannis & Emmanuel Karapidakis, 2022. "Smart Campus Microgrids towards a Sustainable Energy Transition—The Case Study of the Hellenic Mediterranean University in Crete," Mathematics, MDPI, vol. 10(7), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3535-:d:1438040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.