IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v147y2021ics1364032121005062.html
   My bibliography  Save this article

Energy efficiency in extrusion-related polymer processing: A review of state of the art and potential efficiency improvements

Author

Listed:
  • Abeykoon, Chamil
  • McMillan, Alison
  • Nguyen, Bao Kha

Abstract

Energy saving and industrial pollution have become increasingly important issues, therefore the identification and adoption of more energy efficient machines and industrial processes are now industrial priorities, and worthy topics for further development through academic research. Polymeric materials are a major raw material, finding widespread application to a range of current industrial machine components as well as multiple products and packaging found in our daily life. Polymer extrusion serves as a particular example of polymer processing techniques, representative of others in as much as there are analogous intermediate stages in the processing. Processing techniques which require such intermediate stages include the manufacture of blown film, blow moulding, thermo-forming, and injection moulding. Hence, the study of polymer extrusion is a representative paradigm for a wider range of processing techniques. Since polymer processing is an energy intensive process and accounts for a huge share (maybe more than 1/3) of the materials processing sector, any improvement to the process would contribute significantly to global energy savings. This work presents a review of studies, which focus on, or appertain to, the energy consumption of extrusion related polymer processing applications. Typical energy demand and losses during processing are considered, and possible approaches for improving the process energy efficiency while maintaining the required end product quality are considered. Overall, this work provides a detailed discussion about how and where energy is utilised; how, where and why energy losses occur; and sets out approaches for optimising the process energy efficiency.

Suggested Citation

  • Abeykoon, Chamil & McMillan, Alison & Nguyen, Bao Kha, 2021. "Energy efficiency in extrusion-related polymer processing: A review of state of the art and potential efficiency improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:rensus:v:147:y:2021:i:c:s1364032121005062
    DOI: 10.1016/j.rser.2021.111219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121005062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abeykoon, Chamil & Kelly, Adrian L. & Brown, Elaine C. & Vera-Sorroche, Javier & Coates, Phil D. & Harkin-Jones, Eileen & Howell, Ken B. & Deng, Jing & Li, Kang & Price, Mark, 2014. "Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study," Applied Energy, Elsevier, vol. 136(C), pages 726-737.
    2. Joo Hock Ang & Cindy Goh & Alfredo Alan Flores Saldivar & Yun Li, 2017. "Energy-Efficient Through-Life Smart Design, Manufacturing and Operation of Ships in an Industry 4.0 Environment," Energies, MDPI, vol. 10(5), pages 1-13, April.
    3. Abeykoon, Chamil & Kelly, Adrian L. & Brown, Elaine C. & Coates, Phil D., 2016. "The effect of materials, process settings and screw geometry on energy consumption and melt temperature in single screw extrusion," Applied Energy, Elsevier, vol. 180(C), pages 880-894.
    4. Abeykoon, Chamil & Kelly, Adrian L. & Vera-Sorroche, Javier & Brown, Elaine C. & Coates, Phil D. & Deng, Jing & Li, Kang & Harkin-Jones, Eileen & Price, Mark, 2014. "Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stability," Applied Energy, Elsevier, vol. 135(C), pages 560-571.
    5. Deng, Jing & Li, Kang & Harkin-Jones, Eileen & Price, Mark & Karnachi, Nayeem & Kelly, Adrian & Vera-Sorroche, Javier & Coates, Phil & Brown, Elaine & Fei, Minrui, 2014. "Energy monitoring and quality control of a single screw extruder," Applied Energy, Elsevier, vol. 113(C), pages 1775-1785.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jafari, Hamed & Safarzadeh, Soroush & Azad-Farsani, Ehsan, 2022. "Effects of governmental policies on energy-efficiency improvement of hydrogen fuel cell cars: A game-theoretic approach," Energy, Elsevier, vol. 254(PC).
    2. Alberto-Jesus Perea-Moreno, 2021. "Renewable Energy and Energy Saving: Worldwide Research Trends," Sustainability, MDPI, vol. 13(23), pages 1-3, November.
    3. Chi-Jui Tsai & Wen-Jye Shyr, 2022. "Key Factors for Evaluating Visual Perception Responses to Social Media Video Communication," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    4. Canice C. Uzosike & Lachlan H. Yee & Ricardo Vasquez Padilla, 2023. "Small-Scale Mechanical Recycling of Solid Thermoplastic Wastes: A Review of PET, PEs, and PP," Energies, MDPI, vol. 16(3), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Estrada, Omar & Ortiz, Juan Carlos & Hernández, Alexander & López, Iván & Chejne, Farid & del Pilar Noriega, María, 2020. "Experimental study of energy performance of grooved feed and grooved plasticating single screw extrusion processes in terms of SEC, theoretical maximum energy efficiency and relative energy efficiency," Energy, Elsevier, vol. 194(C).
    2. Abeykoon, Chamil & Kelly, Adrian L. & Brown, Elaine C. & Coates, Phil D., 2016. "The effect of materials, process settings and screw geometry on energy consumption and melt temperature in single screw extrusion," Applied Energy, Elsevier, vol. 180(C), pages 880-894.
    3. Zauner, Christoph & Windholz, Bernd & Lauermann, Michael & Drexler-Schmid, Gerwin & Leitgeb, Thomas, 2020. "Development of an Energy Efficient Extrusion Factory employing a latent heat storage and a high temperature heat pump," Applied Energy, Elsevier, vol. 259(C).
    4. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    5. Xiaoxia Chen & Mélanie Despeisse & Björn Johansson, 2020. "Environmental Sustainability of Digitalization in Manufacturing: A Review," Sustainability, MDPI, vol. 12(24), pages 1-31, December.
    6. Delon Konan & Ekoun Koffi & Adama Ndao & Eric Charles Peterson & Denis Rodrigue & Kokou Adjallé, 2022. "An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass," Energies, MDPI, vol. 15(9), pages 1-25, April.
    7. Xiaoli Wu & Yaoyao Qin & Qizhuo Xie & Yunyi Zhang, 2022. "The Mediating and Moderating Effects of the Digital Economy on PM 2.5 : Evidence from China," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    8. Abeykoon, Chamil & Kelly, Adrian L. & Brown, Elaine C. & Vera-Sorroche, Javier & Coates, Phil D. & Harkin-Jones, Eileen & Howell, Ken B. & Deng, Jing & Li, Kang & Price, Mark, 2014. "Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study," Applied Energy, Elsevier, vol. 136(C), pages 726-737.
    9. Canice C. Uzosike & Lachlan H. Yee & Ricardo Vasquez Padilla, 2023. "Small-Scale Mechanical Recycling of Solid Thermoplastic Wastes: A Review of PET, PEs, and PP," Energies, MDPI, vol. 16(3), pages 1-23, January.
    10. Karol Jakub Listewnik, 2022. "A Method for the Evaluation of Power-Generating Sets Based on the Assessment of Power Quality Parameters," Energies, MDPI, vol. 15(14), pages 1-24, July.
    11. Radosław Wolniak & Sebastian Saniuk & Sandra Grabowska & Bożena Gajdzik, 2020. "Identification of Energy Efficiency Trends in the Context of the Development of Industry 4.0 Using the Polish Steel Sector as an Example," Energies, MDPI, vol. 13(11), pages 1-16, June.
    12. Mkwananzi, Thobeka & Mandegari, Mohsen & Görgens, Johann F., 2019. "Disturbance modelling through steady-state value deviations: The determination of suitable energy indicators and parameters for energy consumption monitoring in a typical sugar mill," Energy, Elsevier, vol. 176(C), pages 211-223.
    13. Mohamed Haddouche & Adrian Ilinca, 2022. "Energy Efficiency and Industry 4.0 in Wood Industry: A Review and Comparison to Other Industries," Energies, MDPI, vol. 15(7), pages 1-25, March.
    14. Remigiusz Wisniewski, 2021. "Design of Petri Net-Based Cyber-Physical Systems Oriented on the Implementation in Field Programmable Gate Arrays," Energies, MDPI, vol. 14(21), pages 1-25, October.
    15. Fanny Kovaleski & Claudia Tania Picinin & João Luiz Kovaleski, 2022. "The Challenges of Technology Transfer in the Industry 4.0 Era Regarding Anthropotechnological Aspects: A Systematic Review," SAGE Open, , vol. 12(3), pages 21582440221, July.
    16. Thuy Duong Oesterreich & Julian Schuir & Frank Teuteberg, 2020. "The Emperor’s New Clothes or an Enduring IT Fashion? Analyzing the Lifecycle of Industry 4.0 through the Lens of Management Fashion Theory," Sustainability, MDPI, vol. 12(21), pages 1-29, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:147:y:2021:i:c:s1364032121005062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.