IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1406-d1052818.html
   My bibliography  Save this article

Small-Scale Mechanical Recycling of Solid Thermoplastic Wastes: A Review of PET, PEs, and PP

Author

Listed:
  • Canice C. Uzosike

    (Faculty of Science and Engineering, Southern Cross University, Military Road, P.O. Box 157, Lismore, NSW 2480, Australia)

  • Lachlan H. Yee

    (Faculty of Science and Engineering, Southern Cross University, Military Road, P.O. Box 157, Lismore, NSW 2480, Australia
    Marine Ecology Research Centre, Southern Cross University, Military Road, P.O. Box 157, Lismore, NSW 2480, Australia)

  • Ricardo Vasquez Padilla

    (Faculty of Science and Engineering, Southern Cross University, Military Road, P.O. Box 157, Lismore, NSW 2480, Australia)

Abstract

The mechanical recycling of solid plastic waste on a small-scale level can be accomplished with the correct approaches. Thermoplastics are the types of plastic mostly considered for mechanical recycling because of their physical properties and ease of reprocessing. This paper reviews the mechanical reprocessing techniques of selected thermoplastics (polyethylene terephthalate and polyolefins), since they constitute a significant proportion of the plastics used commercially. Furthermore, necessary considerations for the effective operation of small-scale plants, including energy requirements of machinery and optimisation in order to improve efficiency and product quality, are discussed. A clearer understanding and addressing of the process-related challenges will lead to the successful establishment and management of small-scale mechanical recycling facilities to benefit communities. Efficient small-scale mechanical reprocessing establishments have become essential in reducing the environmental impacts of solid plastic waste and for energy conservation.

Suggested Citation

  • Canice C. Uzosike & Lachlan H. Yee & Ricardo Vasquez Padilla, 2023. "Small-Scale Mechanical Recycling of Solid Thermoplastic Wastes: A Review of PET, PEs, and PP," Energies, MDPI, vol. 16(3), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1406-:d:1052818
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiajia Zheng & Sangwon Suh, 2019. "Strategies to reduce the global carbon footprint of plastics," Nature Climate Change, Nature, vol. 9(5), pages 374-378, May.
    2. Abeykoon, Chamil & Kelly, Adrian L. & Brown, Elaine C. & Coates, Phil D., 2016. "The effect of materials, process settings and screw geometry on energy consumption and melt temperature in single screw extrusion," Applied Energy, Elsevier, vol. 180(C), pages 880-894.
    3. Abeykoon, Chamil & McMillan, Alison & Nguyen, Bao Kha, 2021. "Energy efficiency in extrusion-related polymer processing: A review of state of the art and potential efficiency improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Balint Horvath & Edmund Mallinguh & Csaba Fogarassy, 2018. "Designing Business Solutions for Plastic Waste Management to Enhance Circular Transitions in Kenya," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changping Zhao & Juanjuan Sun & Yun Zhang, 2022. "A Study of the Drivers of Decarbonization in the Plastics Supply Chain in the Post-COVID-19 Era," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    2. Sebastian Spierling & Venkateshwaran Venkatachalam & Marina Mudersbach & Nico Becker & Christoph Herrmann & Hans-Josef Endres, 2020. "End-of-Life Options for Bio-Based Plastics in a Circular Economy—Status Quo and Potential from a Life Cycle Assessment Perspective," Resources, MDPI, vol. 9(7), pages 1-20, July.
    3. Patria, Raffel Dharma & Rehman, Shazia & Yuen, Chun-Bong & Lee, Duu-Jong & Vuppaladadiyam, Arun K. & Leu, Shao-Yuan, 2024. "Energy-environment-economic (3E) hub for sustainable plastic management – Upgraded recycling, chemical valorization, and bioplastics," Applied Energy, Elsevier, vol. 357(C).
    4. Konrad, Kai A. & Lommerud, Kjell Erik, 2021. "Effective climate policy needs non-combustion uses for hydrocarbons," Energy Policy, Elsevier, vol. 157(C).
    5. N. O. Kapustin & D. A. Grushevenko, 2023. "Assessment of Long-Term Prospects for Demand in the Plastics Market in the Face of Industry Transformation," Studies on Russian Economic Development, Springer, vol. 34(2), pages 243-253, April.
    6. Marcos Ferasso & Tatiana Beliaeva & Sascha Kraus & Thomas Clauss & Domingo Ribeiro‐Soriano, 2020. "Circular economy business models: The state of research and avenues ahead," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3006-3024, December.
    7. Baoqing Chen & Jixiao Cui & Wenyi Dong & Changrong Yan, 2023. "Effects of Biodegradable Plastic Film on Carbon Footprint of Crop Production," Agriculture, MDPI, vol. 13(4), pages 1-9, March.
    8. Gilbert Moyen Massa & Vasiliki-Maria Archodoulaki, 2024. "An Imported Environmental Crisis: Plastic Mismanagement in Africa," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    9. Žaneta Stasiškienė & Jelena Barbir & Lina Draudvilienė & Zhi Kai Chong & Kerstin Kuchta & Viktoria Voronova & Walter Leal Filho, 2022. "Challenges and Strategies for Bio-Based and Biodegradable Plastic Waste Management in Europe," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    10. Pritish Behuria, 2019. "The comparative political economy of plastic bag bans in East Africa: why implementation has varied in Rwanda, Kenya and Uganda," Global Development Institute Working Paper Series 372019, GDI, The University of Manchester.
    11. David Duindam, 2022. "Transitioning to Sustainable Healthcare: Decarbonising Healthcare Clinics, a Literature Review," Challenges, MDPI, vol. 13(2), pages 1-20, December.
    12. Ólafur Ögmundarson & Laura Sophie Kalweit & Venkateshwaran Venkatachalam & Rakel Kristjánsdóttir & Hans-Josef Endres & Sebastian Spierling, 2022. "Plastic Packaging Waste Management in Iceland: Challenges and Opportunities from a Life Cycle Assessment Perspective," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    13. Luiz C. Terra dos Santos & Adrielle Frimaio & Biagio F. Giannetti & Feni Agostinho & Gengyuan Liu & Cecilia M. V. B. Almeida, 2023. "Integrating Environmental, Social, and Economic Dimensions to Monitor Sustainability in the G20 Countries," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    14. Chrysanthos Maraveas, 2020. "Environmental Sustainability of Plastic in Agriculture," Agriculture, MDPI, vol. 10(8), pages 1-15, July.
    15. Jafari, Hamed & Safarzadeh, Soroush & Azad-Farsani, Ehsan, 2022. "Effects of governmental policies on energy-efficiency improvement of hydrogen fuel cell cars: A game-theoretic approach," Energy, Elsevier, vol. 254(PC).
    16. Emilia Jankowska & Miranda R. Gorman & Chad J. Frischmann, 2022. "Transforming the Plastic Production System Presents Opportunities to Tackle the Climate Crisis," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    17. Klemeš, Jiří Jaromír & Fan, Yee Van & Tan, Raymond R. & Jiang, Peng, 2020. "Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    18. Ghulamullah Maitlo & Imran Ali & Hubdar Ali Maitlo & Safdar Ali & Imran Nazir Unar & Muhammad Bilal Ahmad & Darya Khan Bhutto & Ramesh Kumar Karmani & Shamim ur Rehman Naich & Raja Umer Sajjad & Sikan, 2022. "Plastic Waste Recycling, Applications, and Future Prospects for a Sustainable Environment," Sustainability, MDPI, vol. 14(18), pages 1-27, September.
    19. Erfan Oliaei & Peter Olsén & Tom Lindström & Lars A. Berglund, 2022. "Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Siddharthan Selvaraj & Somasundaram Prasadh & Shivkanya Fuloria & Vetriselvan Subramaniyan & Mahendran Sekar & Abdelmoty M. Ahmed & Belgacem Bouallegue & Darnal Hari Kumar & Vipin Kumar Sharma & Moham, 2022. "COVID-19 Biomedical Plastics Wastes—Challenges and Strategies for Curbing the Environmental Disaster," Sustainability, MDPI, vol. 14(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1406-:d:1052818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.