IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v144y2021ics1364032121002781.html
   My bibliography  Save this article

A review on pore-scale modeling and CT scan technique to characterize the trapped carbon dioxide in impermeable reservoir rocks during sequestration

Author

Listed:
  • Saraf, Shubham
  • Bera, Achinta

Abstract

Global warming is increasing at a perpetual rate due to the emission of greenhouse gases in recent years. This spectacle has been mainly caused by the increase of carbon dioxide (CO2) in the environment. It is in need to find a path to reduce the greenhouse gases along with the additional benefit of energy demand in a sustainable way. A favorable long-term way out to mitigate global warming is to inject CO2 into geological formations of oil fields to achieve a goal of a combination of CO2 sequestration and enhanced oil recovery by CO2 flooding. Understanding the mechanism of CO2 sequestration under impermeable rock formation requires the knowledge of the pore-scale modeling concept. This review article provides an overview of pore-scale modeling and micro-CT scan imaging technique for CO2 sequestration including a background of basic concepts related to storage, CO2 enhanced oil recovery, simulators used, and storage estimation. Trapping mechanisms, geological description of the formation for CO2 sequestration, and reactions that have taken place during the trapping in underground formation are also discussed elaborately. Macro-scale and pore-scale modeling are depicted based on the current literature available. This review also presents petrophysical data that comes from the pore network modeling of CO2-brine pore structure for the formation of carbon-containing sandstone reservoirs. A discussion on the challenges of CO2 sequestration and modeling in pore-scale is also furnished to point out the problems and solutions in near future. Finally, the prospect of CO2 sequestration and pore-scale modeling are described for its uncountable value in greenhouse gas reduction from the environment.

Suggested Citation

  • Saraf, Shubham & Bera, Achinta, 2021. "A review on pore-scale modeling and CT scan technique to characterize the trapped carbon dioxide in impermeable reservoir rocks during sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002781
    DOI: 10.1016/j.rser.2021.110986
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121002781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Wachtel & Boris Vujčić, 2019. "24th Dubrovnik Economic Conferences Symposium," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 61(2), pages 193-194, June.
    2. Torben M. Andersen & Giuseppe Bertola & John Driffill & Clemens Fuest & Harold James & Jan-Egbert Sturm & Branko Uroševic, 2019. "Chapter 2: Coping (or not) with Change," EEAG Report on the European Economy, CESifo, vol. 0, pages 38-60, February.
    3. Junwei Su & Le Wang & Zhaolin Gu & Yunwei Zhang & Chungang Chen, 2018. "Advances in Pore-Scale Simulation of Oil Reservoirs," Energies, MDPI, vol. 11(5), pages 1-17, May.
    4. Bill Dupor & Rong Li & M. Saif Mehkari & Yi-Chan Tsai, 2018. "The 2008 U.S. Auto Market Collapse," Working Papers 2018-19, Federal Reserve Bank of St. Louis.
    5. Booras, G.S. & Smelser, S.C., 1991. "An engineering and economic evaluation of CO2 removal from fossil-fuel-fired power plants," Energy, Elsevier, vol. 16(11), pages 1295-1305.
    6. Sieds, 2019. "Complete Volume LXXIII n. 2 2019," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 73(2), pages 1-148, April-Jun.
    7. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2014. "Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 117(C), pages 62-75.
    8. Sieds, 2019. "Complete Volume LXXIII n. 4 2019," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 73(4), pages 1-160, October-D.
    9. Oldenburg, C.M & Stevens, S.H & Benson, S.M, 2004. "Economic feasibility of carbon sequestration with enhanced gas recovery (CSEGR)," Energy, Elsevier, vol. 29(9), pages 1413-1422.
    10. Sieds, 2019. "Complete Volume LXXIII n. 1 2019," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 73(1), pages 1-155, January-M.
    11. Sieds, 2019. "Complete Volume LXXIII n. 3 2019," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 73(3), pages 1-150, July-Sept.
    12. Nijdam, Durk S. & Rood, Trudy G.A. & van Oorschot, Mark M.P., 2019. "Land use related to Dutch consumption, 1990–2013," Land Use Policy, Elsevier, vol. 82(C), pages 401-413.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pandey, Anjanay & Sinha, A.S.K. & Chaturvedi, Krishna Raghav & Sharma, Tushar, 2021. "Experimental investigation on effect of reservoir conditions on stability and rheology of carbon dioxide foams of nonionic surfactant and polymer: Implications of carbon geo-storage," Energy, Elsevier, vol. 235(C).
    2. Ting Chen & Laiming Song & Xueying Zhang & Yawen Yang & Huifang Fan & Bin Pan, 2023. "A Review of Mineral and Rock Wettability Changes Induced by Reaction: Implications for CO 2 Storage in Saline Reservoirs," Energies, MDPI, vol. 16(8), pages 1-17, April.
    3. Ping Yue & Feng Liu & Kai Yang & Chunshuo Han & Chao Ren & Jiangtang Zhou & Xiukun Wang & Quantang Fang & Xinxin Li & Liangbin Dou, 2022. "Micro-Displacement and Storage Mechanism of CO 2 in Tight Sandstone Reservoirs Based on CT Scanning," Energies, MDPI, vol. 15(17), pages 1-16, August.
    4. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    5. Dabbaghi, Ehsan & Ng, Kam, 2024. "Effects of CO2 on the mineralogy, mechanical, and transport properties of rocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Le Wang & Haowen Wu & Zhourong Cao & Shijie Fang & Shiyu Duan & Yishuo Wang, 2023. "Influence of Different Redevelopment Measures on Water–Oil Immiscible Displacement and Mechanism Analysis," Energies, MDPI, vol. 16(13), pages 1-19, June.
    7. Guo, Bei-Er & Xiao, Nan & Martyushev, Dmitriy & Zhao, Zhi, 2024. "Deep learning-based pore network generation: Numerical insights into pore geometry effects on microstructural fluid flow behaviors of unconventional resources," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucija Jukić & Domagoj Vulin & Valentina Kružić & Maja Arnaut, 2021. "Carbon-Negative Scenarios in High CO 2 Gas Condensate Reservoirs," Energies, MDPI, vol. 14(18), pages 1-11, September.
    2. Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
    3. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2015. "A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions," Applied Energy, Elsevier, vol. 140(C), pages 365-377.
    4. Lee, Suh-Young & Lee, Jae-Uk & Lee, In-Beum & Han, Jeehoon, 2017. "Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk," Applied Energy, Elsevier, vol. 189(C), pages 725-738.
    5. Haraden, John, 1992. "The status of hot dry rock as an energy source," Energy, Elsevier, vol. 17(8), pages 777-786.
    6. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    7. Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
    8. Moreaux, Michel & Amigues, Jean-Pierre & van der Meijden, Gerard & Withagen, Cees, 2024. "Carbon capture: Storage vs. Utilization," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    9. Janusz Badur & Michel Feidt & Paweł Ziółkowski, 2020. "Neoclassical Navier–Stokes Equations Considering the Gyftopoulos–Beretta Exposition of Thermodynamics," Energies, MDPI, vol. 13(7), pages 1-34, April.
    10. Wu, Hao & Lubbers, Nicholas & Viswanathan, Hari S. & Pollyea, Ryan M., 2021. "A multi-dimensional parametric study of variability in multi-phase flow dynamics during geologic CO2 sequestration accelerated with machine learning," Applied Energy, Elsevier, vol. 287(C).
    11. Dai, Zhenxue & Zhang, Ye & Bielicki, Jeffrey & Amooie, Mohammad Amin & Zhang, Mingkan & Yang, Changbing & Zou, Youqin & Ampomah, William & Xiao, Ting & Jia, Wei & Middleton, Richard & Zhang, Wen & Sun, 2018. "Heterogeneity-assisted carbon dioxide storage in marine sediments," Applied Energy, Elsevier, vol. 225(C), pages 876-883.
    12. Luo, Feng & Xu, Rui-Na & Jiang, Pei-Xue, 2013. "Numerical investigation of the influence of vertical permeability heterogeneity in stratified formation and of injection/production well perforation placement on CO2 geological storage with enhanced C," Applied Energy, Elsevier, vol. 102(C), pages 1314-1323.
    13. Masoud Mohammadi & Masoud Riazi, 2022. "Applicable Investigation of SPH in Characterization of Fluid Flow in Uniform and Non-Uniform Periodic Porous Media," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    14. Vlachou, Andriana & Vassos, Spyros & Andrikopoulos, Andreas, 1996. "Energy and environment: Reducing CO2 emissions from the electric power industry," Journal of Policy Modeling, Elsevier, vol. 18(4), pages 343-376, August.
    15. Marcin Kremieniewski, 2022. "Improving the Efficiency of Oil Recovery in Research and Development," Energies, MDPI, vol. 15(12), pages 1-7, June.
    16. Harmenberg, Karl & Öberg, Erik, 2021. "Consumption dynamics under time-varying unemployment risk," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 350-365.
    17. Onyebuchi, V.E. & Kolios, A. & Hanak, D.P. & Biliyok, C. & Manovic, V., 2018. "A systematic review of key challenges of CO2 transport via pipelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2563-2583.
    18. Harnpon Phungrassami & Phairat Usubharatana, 2021. "Environmental Problem Shifting Analysis of Pollution Control Units in a Coal-Fired Powerplant Based on Multiple Regression and LCA Methodology," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    19. Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
    20. Ma, Lei & Zhou, Lei & Mbadinga, Serge Maurice & Gu, Ji-Dong & Mu, Bo-Zhong, 2018. "Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters," Energy, Elsevier, vol. 147(C), pages 663-671.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.