IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v138y2021ics1364032120309400.html
   My bibliography  Save this article

Finite-time thermodynamics modeling and analysis on compressed air energy storage systems with thermal storage

Author

Listed:
  • Guo, Huan
  • Xu, Yujie
  • Zhang, Xinjing
  • Zhu, Yilin
  • Chen, Haisheng

Abstract

The charging and discharging processes of compressed air energy storage (CAES) systems are operated separately, and their characteristics depend on time strongly. In addition, CAES systems typically consist of certain scales of thermal storage and air storage units. The size of these units has a significant effect on system performance. As time and size factors are usually involved and analyzed through finite-time thermodynamics, it can be applied for analyzing and optimizing CAES systems properly. In this paper, the finite-time thermodynamics models for CAES systems with thermal storage (TS-CAES) including single-stage and multi-stage configurations are first established. Equations of TS-CAES system efficiency are innovatively derived, with time and size items being clearly expressed and decoupled. Moreover, the well-built unbalanced factors among compressor/expander stages are used for investigating the coupling relationship. The system efficiencies with charging/discharging time, heat exchange area, unbalanced factors and other key parameters are calculated. The finite-time thermodynamic boundary of TS-CAES system is obtained. It is found that the effect of finite time and finite size on the system efficiency is in a certain range, and the optimal heat transfer conductance under a certain finite storage/release time is attained. System efficiency decreases obviously with the increase of pressure/expansion ratio unbalance. The equilibrium of the pressure loss coefficient rather than the absolute value of the pressure loss can achieve higher efficiency. Positive matching of pressure ratio/expansion ratio and compressor efficiency/expander efficiency can result in obvious positive effects.

Suggested Citation

  • Guo, Huan & Xu, Yujie & Zhang, Xinjing & Zhu, Yilin & Chen, Haisheng, 2021. "Finite-time thermodynamics modeling and analysis on compressed air energy storage systems with thermal storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120309400
    DOI: 10.1016/j.rser.2020.110656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120309400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yaowang & Miao, Shihong & Luo, Xing & Yin, Binxin & Han, Ji & Wang, Jihong, 2020. "Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid," Applied Energy, Elsevier, vol. 261(C).
    2. Khaliq, Abdul & Kumar, Rajesh, 2005. "Finite-time heat-transfer analysis and ecological optimization of an endoreversible and regenerative gas-turbine power-cycle," Applied Energy, Elsevier, vol. 81(1), pages 73-84, May.
    3. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    4. Li, Ya-Qi & He, Ya-Ling & Wang, Zhi-Feng & Xu, Chao & Wang, Weiwei, 2012. "Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics," Renewable Energy, Elsevier, vol. 39(1), pages 447-454.
    5. Tierney, Michael, 2020. "Minimum exergy destruction from endoreversible and finite-time thermodynamics machines and their concomitant indirect energy," Energy, Elsevier, vol. 197(C).
    6. Guo, Huan & Xu, Yujie & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2020. "Transmission characteristics of exergy for novel compressed air energy storage systems-from compression and expansion sections to the whole system," Energy, Elsevier, vol. 193(C).
    7. Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
    8. Ngouateu Wouagfack, Paiguy Armand & Tchinda, Réné, 2013. "Finite-time thermodynamics optimization of absorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 524-536.
    9. Arabkoohsar, Ahmad & Rahrabi, Hamid Reza & Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A., 2020. "Impact of Off-design operation on the effectiveness of a low-temperature compressed air energy storage system," Energy, Elsevier, vol. 197(C).
    10. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Huan & Xu, Yujie & Kang, Haoyuan & Guo, Wenbing & Liu, Yu & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2023. "From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems," Applied Energy, Elsevier, vol. 352(C).
    2. Guo, Huan & Xu, Yujie & Zhu, Yilin & Zhou, Xuezhi & Chen, Haisheng, 2022. "Thermal-mechanical coefficient analysis of adiabatic compressor and expander in compressed air energy storage systems," Energy, Elsevier, vol. 244(PB).
    3. Yang, Wenhao & Feng, Huijun & Chen, Lingen & Ge, Yanlin, 2023. "Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle," Energy, Elsevier, vol. 278(C).
    4. Guo, Huan & Xu, Yujie & Huang, Lujing & Sun, Jianting & Chen, Haisheng, 2023. "Optimization strategy using corresponding-point methodology (CPM) concerning finite time and heat conduction rate for CAES systems," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Ji & Miao, Shihong & Chen, Zhe & Liu, Zhou & Li, Yaowang & Yang, Weichen & Liu, Ziwen, 2021. "Multi-View clustering and discrete consensus based tri-level coordinated control of wind farm and adiabatic compressed air energy storage for providing frequency regulation service," Applied Energy, Elsevier, vol. 304(C).
    2. Guo, Huan & Xu, Yujie & Zhang, Xuehui & Liang, Qi & Wang, Shurui & Chen, Haisheng, 2021. "Dynamic characteristics and control of supercritical compressed air energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    3. Guo, Chaobin & Li, Cai & Zhang, Keni & Cai, Zuansi & Ma, Tianran & Maggi, Federico & Gan, Yixiang & El-Zein, Abbas & Pan, Zhejun & Shen, Luming, 2021. "The promise and challenges of utility-scale compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 286(C).
    4. Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
    5. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    6. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
    7. Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Mishra, Dillip Kumar & Li, Li & Zhang, Jiangfeng & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Application of small-scale compressed air energy storage in the daily operation of an active distribution system," Energy, Elsevier, vol. 231(C).
    8. Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
    9. Shang Chen & Ahmad Arabkoohsar & Guodong Chen & Mads Pagh Nielsen, 2022. "Optimization of a Hybrid Energy System with District Heating and Cooling Considering Off-Design Characteristics of Components, an Effort on Optimal Compressed Air Energy Storage Integration," Energies, MDPI, vol. 15(13), pages 1-21, June.
    10. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Chen, Wei & Bai, Jianshu & Wang, Guohua & Xie, Ningning & Ma, Linrui & Wang, Yazhou & Zhang, Tong & Xue, Xiaodai, 2023. "First and second law analysis and operational mode optimization of the compression process for an advanced adiabatic compressed air energy storage based on the established comprehensive dynamic model," Energy, Elsevier, vol. 263(PC).
    12. Zhang, Xinjing & Chen, Haisheng & Xu, Yujie & Li, Wen & He, Fengjuan & Guo, Huan & Huang, Ye, 2017. "Distributed generation with energy storage systems: A case study," Applied Energy, Elsevier, vol. 204(C), pages 1251-1263.
    13. Cui, Shuangshuang & Song, Jintao & Wang, Tingting & Liu, Yixue & He, Qing & Liu, Wenyi, 2021. "Thermodynamic analysis and efficiency assessment of a novel multi-generation liquid air energy storage system," Energy, Elsevier, vol. 235(C).
    14. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Perroit, Quentin & Davies, Simon & Revellin, Rémi, 2020. "Thermodynamic simulation of a micro advanced adiabatic compressed air energy storage for building application," Applied Energy, Elsevier, vol. 260(C).
    15. Xia, Tian & Li, Yaowang & Zhang, Ning & Kang, Chongqing, 2022. "Role of compressed air energy storage in urban integrated energy systems with increasing wind penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. He, Wei & Dooner, Mark & King, Marcus & Li, Dacheng & Guo, Songshan & Wang, Jihong, 2021. "Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation," Applied Energy, Elsevier, vol. 282(PA).
    17. Venkataramani, Gayathri & Vijayamithran, Pranesh & Li, Yongliang & Ding, Yulong & Chen, Haisheng & Ramalingam, Velraj, 2019. "Thermodynamic analysis on compressed air energy storage augmenting power / polygeneration for roundtrip efficiency enhancement," Energy, Elsevier, vol. 180(C), pages 107-120.
    18. Guo, Huan & Xu, Yujie & Kang, Haoyuan & Guo, Wenbing & Liu, Yu & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2023. "From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems," Applied Energy, Elsevier, vol. 352(C).
    19. Wu, Danman & Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2021. "Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat," Energy, Elsevier, vol. 233(C).
    20. Li, Ruixiong & Wang, Huanran & Zhang, Haoran, 2019. "Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 326-339.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120309400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.