IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v120y2020ics1364032119308731.html
   My bibliography  Save this article

The optimum daily direction of solar panels in the highlands, derived by an analytical method

Author

Listed:
  • Gardashov, Rauf
  • Eminov, Murad
  • Kara, Gökhan
  • Emecen Kara, Esma Gül
  • Mammadov, Tural
  • Huseynova, Xedce

Abstract

It is well known, that for the efficient usage of solar energy the choosing the optimal location and direction of solar panels is one of most important issues. Finding the correct solution for this problem is especially significant in mountain regions that have a complex topography. A new method for the determination of the optimal daily panel direction is presented. The method is based on a simple mathematical model of solar radiation, which determines the amount of solar energy for any instant of time and any point taking into account shadowing of the Sun caused by surrounding relief. The optimal direction of the solar panel is determined analytically, as a solution of the derived system of equations. An algorithm for the determination of daily, monthly, seasonal and annual optimal directions is realised. The results of calculations and measurements for the chosen site are presented and the adequacy of the method is tested. The method can be especially useful for the smart determination of optimal direction and installation of panels in mountain regions which have high touristic potential and require clean energy usage.

Suggested Citation

  • Gardashov, Rauf & Eminov, Murad & Kara, Gökhan & Emecen Kara, Esma Gül & Mammadov, Tural & Huseynova, Xedce, 2020. "The optimum daily direction of solar panels in the highlands, derived by an analytical method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  • Handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308731
    DOI: 10.1016/j.rser.2019.109668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119308731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Díaz, F. & Montero, H. & Santana, D. & Montero, G. & Rodríguez, E. & Mazorra Aguiar, L. & Oliver, A., 2018. "Improving shadows detection for solar radiation numerical models," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 71-85.
    2. Antonanzas-Torres, F. & Urraca, R. & Polo, J. & Perpiñán-Lamigueiro, O. & Escobar, R., 2019. "Clear sky solar irradiance models: A review of seventy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 374-387.
    3. Yakup, Mohd Azmi bin Hj Mohd & Malik, A.Q, 2001. "Optimum tilt angle and orientation for solar collector in Brunei Darussalam," Renewable Energy, Elsevier, vol. 24(2), pages 223-234.
    4. Benghanem, M., 2011. "Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia," Applied Energy, Elsevier, vol. 88(4), pages 1427-1433, April.
    5. Lubitz, William David, 2011. "Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels," Applied Energy, Elsevier, vol. 88(5), pages 1710-1719, May.
    6. Ma, Yi & Li, Guihua & Tang, Runsheng, 2011. "Optical performance of vertical axis three azimuth angles tracked solar panels," Applied Energy, Elsevier, vol. 88(5), pages 1784-1791, May.
    7. Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2011. "Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study," Energy Policy, Elsevier, vol. 39(3), pages 1397-1409, March.
    8. Yadav, S. & Panda, S.K. & Tripathy, M., 2018. "Performance of building integrated photovoltaic thermal system with PV module installed at optimum tilt angle and influenced by shadow," Renewable Energy, Elsevier, vol. 127(C), pages 11-23.
    9. Wong, L. T. & Chow, W. K., 2001. "Solar radiation model," Applied Energy, Elsevier, vol. 69(3), pages 191-224, July.
    10. Jung, Jaehoon & Han, SangUk & Kim, Byungil, 2019. "Digital numerical map-oriented estimation of solar energy potential for site selection of photovoltaic solar panels on national highway slopes," Applied Energy, Elsevier, vol. 242(C), pages 57-68.
    11. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    12. Al Garni, Hassan Z. & Awasthi, Anjali & Wright, David, 2019. "Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia," Renewable Energy, Elsevier, vol. 133(C), pages 538-550.
    13. Bakirci, Kadir, 2012. "General models for optimum tilt angles of solar panels: Turkey case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6149-6159.
    14. Kacira, Murat & Simsek, Mehmet & Babur, Yunus & Demirkol, Sedat, 2004. "Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey," Renewable Energy, Elsevier, vol. 29(8), pages 1265-1275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oh, Myeongchan & Kim, Jin-Young & Kim, Boyoung & Yun, Chang-Yeol & Kim, Chang Ki & Kang, Yong-Heack & Kim, Hyun-Goo, 2021. "Tolerance angle concept and formula for practical optimal orientation of photovoltaic panels," Renewable Energy, Elsevier, vol. 167(C), pages 384-394.
    2. Tong Liu & Li Liu & Yufang He & Mengfei Sun & Jian Liu & Guochang Xu, 2021. "A Theoretical Optimum Tilt Angle Model for Solar Collectors from Keplerian Orbit," Energies, MDPI, vol. 14(15), pages 1-17, July.
    3. Arias-Rosales, Andrés & LeDuc, Philip R., 2023. "Urban solar harvesting: The importance of diffuse shadows in complex environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    4. Arias-Rosales, Andrés & LeDuc, Philip R., 2022. "Shadow modeling in urban environments for solar harvesting devices with freely defined positions and orientations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kafka, Jennifer & Miller, Mark A., 2020. "The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use," Renewable Energy, Elsevier, vol. 155(C), pages 531-546.
    2. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    3. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    4. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.
    5. Shirazi, Ali Mohammad & Zomorodian, Zahra S. & Tahsildoost, Mohammad, 2019. "Techno-economic BIPV evaluation method in urban areas," Renewable Energy, Elsevier, vol. 143(C), pages 1235-1246.
    6. Gökmen, Nuri & Hu, Weihao & Hou, Peng & Chen, Zhe & Sera, Dezso & Spataru, Sergiu, 2016. "Investigation of wind speed cooling effect on PV panels in windy locations," Renewable Energy, Elsevier, vol. 90(C), pages 283-290.
    7. Oh, Myeongchan & Kim, Jin-Young & Kim, Boyoung & Yun, Chang-Yeol & Kim, Chang Ki & Kang, Yong-Heack & Kim, Hyun-Goo, 2021. "Tolerance angle concept and formula for practical optimal orientation of photovoltaic panels," Renewable Energy, Elsevier, vol. 167(C), pages 384-394.
    8. Bakirci, Kadir, 2012. "General models for optimum tilt angles of solar panels: Turkey case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6149-6159.
    9. Maatallah, Taher & El Alimi, Souheil & Nassrallah, Sassi Ben, 2011. "Performance modeling and investigation of fixed, single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4053-4066.
    10. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    11. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    12. Herrera-Romero, J.V. & Colorado-Garrido, D. & Escalante Soberanis, M.A. & Flota-Bañuelos, M., 2020. "Estimation of the optimum tilt angle of solar collectors in Coatzacoalcos, Veracruz," Renewable Energy, Elsevier, vol. 153(C), pages 615-623.
    13. Ullah, Asad & Imran, Hassan & Maqsood, Zaki & Butt, Nauman Zafar, 2019. "Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan," Renewable Energy, Elsevier, vol. 139(C), pages 830-843.
    14. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    15. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    17. Agrawal, Monika & Chhajed, Priyank & Chowdhury, Amartya, 2022. "Performance analysis of photovoltaic module with reflector: Optimizing orientation with different tilt scenarios," Renewable Energy, Elsevier, vol. 186(C), pages 10-25.
    18. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    19. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Rodríguez-Suanzes, C., 2022. "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications," Applied Energy, Elsevier, vol. 305(C).
    20. Dey, Sumon & Lakshmanan, Madan Kumar & Pesala, Bala, 2018. "Optimal solar tree design for increased flexibility in seasonal energy extraction," Renewable Energy, Elsevier, vol. 125(C), pages 1038-1048.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.