IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i2p535-544.html
   My bibliography  Save this article

Human health-related externalities in energy system modelling the case of the Danish heat and power sector

Author

Listed:
  • Zvingilaite, Erika

Abstract

This paper discusses methodology of energy system modelling when reduction of local externalities, such as damage to the human health from energy production-related air pollution, is in focus. Ideally, the local energy externalities should be analysed by adopting the impact pathway approach of ExternE study, and following the pollutants from their release to the personal uptake and resulting health effects. This would require inclusion of air pollution modelling and monetary valuation of the impacts into an energy system optimisation process. However, this approach involves a complex study and generalisations are needed. The way local externalities are included in the existing energy system models is identified and discussed in the paper. Only a few studies include localisation aspects when internalising local externalities in an energy system optimisation. The performed analysis of the Danish heat and power sector verifies that it is cheaper for the society to include externalities in the planning of an energy system than to pay for the resulting damages later. Total health costs decrease by around 18% and total system costs decrease by nearly 4% when health externalities are included in the optimisation. Furthermore, including localisation aspects can reduce health costs of the heat and power sector in Denmark by additional 7%.

Suggested Citation

  • Zvingilaite, Erika, 2011. "Human health-related externalities in energy system modelling the case of the Danish heat and power sector," Applied Energy, Elsevier, vol. 88(2), pages 535-544, February.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:2:p:535-544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00323-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gulli, Francesco, 2006. "Small distributed generation versus centralised supply: a social cost-benefit analysis in the residential and service sectors," Energy Policy, Elsevier, vol. 34(7), pages 804-832, May.
    2. Holmgren, Kristina & Amiri, Shahnaz, 2007. "Internalising external costs of electricity and heat production in a municipal energy system," Energy Policy, Elsevier, vol. 35(10), pages 5242-5253, October.
    3. Carlson, Annelie, 2003. "Energy systems and the climate dilemma: Reflecting the impact on CO2 emissions by reconstructing regional energy systems," Energy Policy, Elsevier, vol. 31(10), pages 951-959, August.
    4. Klaassen, Ger & Riahi, Keywan, 2007. "Internalizing externalities of electricity generation: An analysis with MESSAGE-MACRO," Energy Policy, Elsevier, vol. 35(2), pages 815-827, February.
    5. Krewitt, Wolfram & Heck, Thomas & Trukenmuller, Alfred & Friedrich, Rainer, 1999. "Environmental damage costs from fossil electricity generation in Germany and Europe," Energy Policy, Elsevier, vol. 27(3), pages 173-183, March.
    6. Mancarella, Pierluigi & Chicco, Gianfranco, 2009. "Global and local emission impact assessment of distributed cogeneration systems with partial-load models," Applied Energy, Elsevier, vol. 86(10), pages 2096-2106, October.
    7. Rafaj, Peter & Kypreos, Socrates, 2007. "Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model," Energy Policy, Elsevier, vol. 35(2), pages 828-843, February.
    8. Gebremedhin, Alemayehu & Carlson, Annelie, 2002. "Optimisation of merged district-heating systems--benefits of co-operation in the light of externality costs," Applied Energy, Elsevier, vol. 73(3-4), pages 223-235, November.
    9. Kudelko, Mariusz, 2006. "Internalisation of external costs in the Polish power generation sector: A partial equilibrium model," Energy Policy, Elsevier, vol. 34(18), pages 3409-3422, December.
    10. Nguyen, Khanh Q., 2008. "Internalizing externalities into capacity expansion planning: The case of electricity in Vietnam," Energy, Elsevier, vol. 33(5), pages 740-746.
    11. Silveira, José Luz & de Carvalho, João Jr. & de Castro Villela, Iraídes Aparecida, 2007. "Combined cycle versus one thousand diesel power plants: pollutant emissions, ecological efficiency and economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 524-535, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    2. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    3. Zbigniew Juroszek & Weronika Juroszek, 2018. "Attitudes of heat plant managers as one of the key obstacles to district heating decarbonization in Poland," Energy & Environment, , vol. 29(7), pages 1116-1129, November.
    4. Yang, Xi & Teng, Fei & Wang, Gehua, 2013. "Incorporating environmental co-benefits into climate policies: A regional study of the cement industry in China," Applied Energy, Elsevier, vol. 112(C), pages 1446-1453.
    5. Casas-Ledon, Yannay & Arteaga-Perez, Luis E. & Dewulf, Jo & Morales, Mayra C. & Rosa, Elena & Peralta-Suáreza, Luis M. & Van Langenhove, Herman, 2014. "Health external costs associated to the integration of solid oxide fuel cell in a sugar–ethanol factory," Applied Energy, Elsevier, vol. 113(C), pages 1283-1292.
    6. Dominković, D.F. & Bačeković, I. & Ćosić, B. & Krajačić, G. & Pukšec, T. & Duić, N. & Markovska, N., 2016. "Zero carbon energy system of South East Europe in 2050," Applied Energy, Elsevier, vol. 184(C), pages 1517-1528.
    7. Lott, Melissa C. & Pye, Steve & Dodds, Paul E., 2017. "Quantifying the co-impacts of energy sector decarbonisation on outdoor air pollution in the United Kingdom," Energy Policy, Elsevier, vol. 101(C), pages 42-51.
    8. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    9. Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
    10. Dominković, D.F. & Dobravec, V. & Jiang, Y. & Nielsen, P.S. & Krajačić, G., 2018. "Modelling smart energy systems in tropical regions," Energy, Elsevier, vol. 155(C), pages 592-609.
    11. Pagnini, Luisa & Bracco, Stefano & Delfino, Federico & de-Simón-Martín, Miguel, 2024. "Levelized cost of electricity in renewable energy communities: Uncertainty propagation analysis," Applied Energy, Elsevier, vol. 366(C).
    12. Herrera, I. & De Ruyck, J. & Ocaña, V.S. & Rubio, M. & Martínez, R.M. & Núñez, V., 2013. "Environmental impact of decentralized power generation in Santa Clara City, Cuba: An integrated assessment based on technological and human health risk indicators," Applied Energy, Elsevier, vol. 109(C), pages 24-35.
    13. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
    14. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
    15. Petrović, Stefan N. & Karlsson, Kenneth B., 2016. "Residential heat pumps in the future Danish energy system," Energy, Elsevier, vol. 114(C), pages 787-797.
    16. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    17. Kudełko, Mariusz, 2021. "Modeling of Polish energy sector – tool specification and results," Energy, Elsevier, vol. 215(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    2. Lott, Melissa C. & Pye, Steve & Dodds, Paul E., 2017. "Quantifying the co-impacts of energy sector decarbonisation on outdoor air pollution in the United Kingdom," Energy Policy, Elsevier, vol. 101(C), pages 42-51.
    3. Kosugi, Takanobu & Tokimatsu, Koji & Kurosawa, Atsushi & Itsubo, Norihiro & Yagita, Hiroshi & Sakagami, Masaji, 2009. "Internalization of the external costs of global environmental damage in an integrated assessment model," Energy Policy, Elsevier, vol. 37(7), pages 2664-2678, July.
    4. Fahlén, E. & Ahlgren, E.O., 2010. "Accounting for external costs in a study of a Swedish district-heating system - An assessment of environmental policies," Energy Policy, Elsevier, vol. 38(9), pages 4909-4920, September.
    5. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
    6. Kudełko, Mariusz, 2021. "Modeling of Polish energy sector – tool specification and results," Energy, Elsevier, vol. 215(PA).
    7. Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
    8. Koji Tokimatsu & Louis Dupuy & Nick Hanley, 2019. "Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 281-307, January.
    9. Nir Becker & David Soloveitchik & Moshe Olshansky, 2012. "A Weighted Average Incorporation of Pollution Costs into the Electrical Expansion Planning," Energy & Environment, , vol. 23(1), pages 1-15, January.
    10. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    11. Brown, Kristen E. & Henze, Daven K. & Milford, Jana B., 2017. "How accounting for climate and health impacts of emissions could change the US energy system," Energy Policy, Elsevier, vol. 102(C), pages 396-405.
    12. Yang, Xi & Teng, Fei & Wang, Gehua, 2013. "Incorporating environmental co-benefits into climate policies: A regional study of the cement industry in China," Applied Energy, Elsevier, vol. 112(C), pages 1446-1453.
    13. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    14. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    15. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    16. Jintao Lu & Chong Zhang & Licheng Ren & Mengshang Liang & Wadim Strielkowski & Justas Streimikis, 2020. "Evolution of External Health Costs of Electricity Generation in the Baltic States," IJERPH, MDPI, vol. 17(15), pages 1-22, July.
    17. Benedykt Pepliński & Wawrzyniec Czubak, 2021. "The Influence of Opencast Lignite Mining Dehydration on Plant Production—A Methodological Study," Energies, MDPI, vol. 14(7), pages 1-29, March.
    18. Zvingilaite, Erika, 2013. "Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model," Energy Policy, Elsevier, vol. 55(C), pages 57-72.
    19. Alves, Laura Araujo & Uturbey, Wadaed, 2010. "Environmental degradation costs in electricity generation: The case of the Brazilian electrical matrix," Energy Policy, Elsevier, vol. 38(10), pages 6204-6214, October.
    20. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process," Energy Policy, Elsevier, vol. 37(3), pages 778-787, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:2:p:535-544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.