IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v117y2020ics1364032119306781.html
   My bibliography  Save this article

Embodied carbon assessment of residential housing at urban scale

Author

Listed:
  • Kayaçetin, N.C.
  • Tanyer, A.M.

Abstract

A great majority of the previous research put extensive efforts on the evaluation of life cycle impacts and carbon footprint of single buildings. Analysis on single buildings often excludes components related with urban scale such as construction of infrastructure, distance to city centre and transportation. Research on neighbourhood-scale settlements is necessary to further develop the understanding of the environmental impact of built-environment.

Suggested Citation

  • Kayaçetin, N.C. & Tanyer, A.M., 2020. "Embodied carbon assessment of residential housing at urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
  • Handle: RePEc:eee:rensus:v:117:y:2020:i:c:s1364032119306781
    DOI: 10.1016/j.rser.2019.109470
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119306781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miimu Airaksinen & Pellervo Matilainen, 2011. "A Carbon Footprint of an Office Building," Energies, MDPI, vol. 4(8), pages 1-14, August.
    2. Tsai, Wen-Hsien & Lin, Sin-Jin & Liu, Jau-Yang & Lin, Wan-Rung & Lee, Kuen-Chang, 2011. "Incorporating life cycle assessments into building project decision-making: An energy consumption and CO2 emission perspective," Energy, Elsevier, vol. 36(5), pages 3022-3029.
    3. Aste, Niccolò & Adhikari, R.S. & Buzzetti, Michela, 2010. "Beyond the EPBD: The low energy residential settlement Borgo Solare," Applied Energy, Elsevier, vol. 87(2), pages 629-642, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rebecca Tunstall, 2023. "An empirical test of measures of housing degrowth: Learning from the limited experience of England and Wales, 1981–2011," Urban Studies, Urban Studies Journal Limited, vol. 60(7), pages 1285-1303, May.
    2. Changjian Wang & Fei Wang & Gengzhi Huang & Yang Wang & Xinlin Zhang & Yuyao Ye & Xiaojie Lin & Zhongwu Zhang, 2021. "Examining the Dynamics and Determinants of Energy Consumption in China’s Megacity Based on Industrial and Residential Perspectives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    3. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Pan, W. & Teng, Y., 2021. "A systematic investigation into the methodological variables of embodied carbon assessment of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. John Zacharias, 2021. "Addressing Global Climate Change With Big Data-Driven Urban Planning Policy," International Journal of E-Planning Research (IJEPR), IGI Global, vol. 10(4), pages 1-16, October.
    6. Nematchoua, Modeste Kameni & Orosa, Jose A. & Buratti, Cinzia & Obonyo, Esther & Rim, Donghyun & Ricciardi, Paola & Reiter, Sigrid, 2020. "Comparative analysis of bioclimatic zones, energy consumption, CO2 emission and life cycle cost of residential and commercial buildings located in a tropical region: A case study of the big island of ," Energy, Elsevier, vol. 202(C).
    7. Li, Dezhi & Huang, Guanying & Zhu, Shiyao & Chen, Long & Wang, Jiangbo, 2021. "How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Bonamente & Franco Cotana, 2015. "Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis," Energies, MDPI, vol. 8(11), pages 1-17, November.
    2. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    3. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    4. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    5. Diana Carolina Gámez-García & José Manuel Gómez-Soberón & Ramón Corral-Higuera & Héctor Saldaña-Márquez & María Consolación Gómez-Soberón & Susana Paola Arredondo-Rea, 2018. "A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    6. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    7. Xiguang Cao & Min Deng & Fei Song & Shihu Zhong & Junhao Zhu, 2019. "Direct and moderating effects of environmental regulation intensity on enterprise technological innovation: The case of China," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-20, October.
    8. Pukšec, Tomislav & Vad Mathiesen, Brian & Duić, Neven, 2013. "Potentials for energy savings and long term energy demand of Croatian households sector," Applied Energy, Elsevier, vol. 101(C), pages 15-25.
    9. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    10. Wen-Hsien Tsai & Shi-Yin Jhong, 2018. "Carbon Emissions Cost Analysis with Activity-Based Costing," Sustainability, MDPI, vol. 10(8), pages 1-26, August.
    11. Stefano De Antonellis & Manuel Intini & Cesare Maria Joppolo & Calogero Leone, 2014. "Design Optimization of Heat Wheels for Energy Recovery in HVAC Systems," Energies, MDPI, vol. 7(11), pages 1-20, November.
    12. Jingwen Liu & Chungyeon Won, 2024. "Assessing the Impact of Façade Typologies on Life Cycle Embodied Carbon in University Building Retrofits: A Case Study of South Korea," Sustainability, MDPI, vol. 16(20), pages 1-25, October.
    13. Ki-Won Lee & Young Il Kim, 2022. "Selection of Energy Improvement Factors and Economic Analysis of Standard MDU Complexes in Korean Metropolitan Regions," Energies, MDPI, vol. 15(11), pages 1-24, May.
    14. Ortas, Eduardo & Moneva, José M., 2013. "The Clean Techs equity indexes at stake: Risk and return dynamics analysis," Energy, Elsevier, vol. 57(C), pages 259-269.
    15. Hyo Seon Park & Bongkeun Kwon & Yunah Shin & Yousok Kim & Taehoon Hong & Se Woon Choi, 2013. "Cost and CO 2 Emission Optimization of Steel Reinforced Concrete Columns in High-Rise Buildings," Energies, MDPI, vol. 6(11), pages 1-16, October.
    16. Kuang-Sheng Liu & Sung-Lin Hsueh & Wen-Chen Wu & Yu-Lung Chen, 2012. "A DFuzzy-DAHP Decision-Making Model for Evaluating Energy-Saving Design Strategies for Residential Buildings," Energies, MDPI, vol. 5(11), pages 1-19, November.
    17. Ádám Ipkovich & Károly Héberger & János Abonyi, 2021. "Comprehensible Visualization of Multidimensional Data: Sum of Ranking Differences-Based Parallel Coordinates," Mathematics, MDPI, vol. 9(24), pages 1-17, December.
    18. Jong-Geon Lee & Hyeong-Jae Jang & Sungho Tae & Yonghan Ahn, 2022. "Establishment and Utilization Plans of Apartment Housing Envelope System Database," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    19. Wen-Hsien Tsai & Po-Yuan Chu & Hsiu-Li Lee, 2019. "Green Activity-Based Costing Production Planning and Scenario Analysis for the Aluminum-Alloy Wheel Industry under Industry 4.0," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    20. Leckner, Mitchell & Zmeureanu, Radu, 2011. "Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem," Applied Energy, Elsevier, vol. 88(1), pages 232-241, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:117:y:2020:i:c:s1364032119306781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.