IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v202y2020ics0360544220308616.html
   My bibliography  Save this article

Comparative analysis of bioclimatic zones, energy consumption, CO2 emission and life cycle cost of residential and commercial buildings located in a tropical region: A case study of the big island of Madagascar

Author

Listed:
  • Nematchoua, Modeste Kameni
  • Orosa, Jose A.
  • Buratti, Cinzia
  • Obonyo, Esther
  • Rim, Donghyun
  • Ricciardi, Paola
  • Reiter, Sigrid

Abstract

Indoor comfort, energy demand, carbon emissions and the cost of maintaining a building vary according to the structure of the building and the behaviour of its occupants. The main goal of this research is to analyse the bioclimatic potential of different Malagasy climatic zones. In addition, this study analyses and compares energy consumption and carbon emissions in six building categories commonly found in Sub Sahara African cities designed to be placed in thirteen cities unequally distributed in the six climatic regions in Madagascar. To reach this objective, hourly weather data for the last thirty years were analysed for two seasons. At the same time, the adaptive comfort model defined by the ASHRAE 55 served as a reference for the evaluation of different passive design potentials. The results showed that in the sub-Saharan or hot zone, the range of comfort varies according to with the geographical position and that the number of hours of thermal comfort and acceptability is in the majority of the cases outside the range recommended in the international standards (CIBSE, ASHRAE and ISO). Finally, it was concluded that Madagascar Island, such as other countries, should build their own standard due to the average demand for cooling energy increases every year up to 3.4% in the coastal towns and more than 80% of carbon emissions can be reduced in hospitals in Madagascar, as well as in Sub-Saharan Africa, by increasing the maintenance cost between 7% and 10% of the total life cycle cost of a building. In Madagascar Island, the building Life cycle cost ranges from 12% to 14% for the construction cost, 0–1% for the renovation cost, 36%–73% for the energy cost, 2%–3% for the maintenance cost on the whole LCC.

Suggested Citation

  • Nematchoua, Modeste Kameni & Orosa, Jose A. & Buratti, Cinzia & Obonyo, Esther & Rim, Donghyun & Ricciardi, Paola & Reiter, Sigrid, 2020. "Comparative analysis of bioclimatic zones, energy consumption, CO2 emission and life cycle cost of residential and commercial buildings located in a tropical region: A case study of the big island of ," Energy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308616
    DOI: 10.1016/j.energy.2020.117754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220308616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kayaçetin, N.C. & Tanyer, A.M., 2020. "Embodied carbon assessment of residential housing at urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Nematchoua, Modeste Kameni & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson & René, Tchinda & Orosa, José A. & Elvis, Watis & Meukam, Pierre, 2015. "Study of the economical and optimum thermal insulation thickness for buildings in a wet and hot tropical climate: Case of Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1192-1202.
    3. Ali-Toudert, Fazia & Weidhaus, Juliane, 2017. "Numerical assessment and optimization of a low-energy residential building for Mediterranean and Saharan climates using a pilot project in Algeria," Renewable Energy, Elsevier, vol. 101(C), pages 327-346.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael M. Santos & Ana Vaz Ferreira & João C. G. Lanzinha, 2022. "Passive Solar Systems for the Promotion of Thermal Comfort in African Countries: A Review," Energies, MDPI, vol. 15(23), pages 1-37, December.
    2. Ozarisoy, B. & Altan, H., 2022. "Significance of occupancy patterns and habitual household adaptive behaviour on home-energy performance of post-war social-housing estate in the South-eastern Mediterranean climate: Energy policy desi," Energy, Elsevier, vol. 244(PB).
    3. Nematchoua, Modeste Kameni & Asadi, Somayeh & Reiter, Sigrid, 2020. "Influence of energy mix on the life cycle of an eco-neighborhood, a case study of 150 countries," Renewable Energy, Elsevier, vol. 162(C), pages 81-97.
    4. Modeste Kameni Nematchoua, 2022. "Strategies for Studying Acidification and Eutrophication Potentials, a Case Study of 150 Countries," J, MDPI, vol. 5(1), pages 1-16, March.
    5. Gabriela Kania & Klaudia Kwiecień & Mateusz Malinowski & Maciej Gliniak, 2021. "Analyses of the Life Cycles and Social Costs of CO 2 Emissions of Single-Family Residential Buildings: A Case Study in Poland," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    6. Lin, Jinyao & Lu, Siyan & He, Xiaoyu & Wang, Fang, 2021. "Analyzing the impact of three-dimensional building structure on CO2 emissions based on random forest regression," Energy, Elsevier, vol. 236(C).
    7. Modeste Kameni Nematchoua & José A. Orosa & Paola Ricciardi & Esther Obonyo & Eric Jean Roy Sambatra & Sigrid Reiter, 2021. "Transition to Zero Energy and Low Carbon Emission in Residential Buildings Located in Tropical and Temperate Climates," Energies, MDPI, vol. 14(14), pages 1-21, July.
    8. Hye Gi Kim & Hyun Jun Kim & Chae Hwan Jeon & Myeong Won Chae & Young Hum Cho & Sun Sook Kim, 2020. "Analysis of Energy Saving Effect and Cost Efficiency of ECMs to Upgrade the Building Energy Code," Energies, MDPI, vol. 13(18), pages 1-22, September.
    9. Jeeyoung Lim & Joseph J. Kim & Sunkuk Kim, 2021. "A Holistic Review of Building Energy Efficiency and Reduction Based on Big Data," Sustainability, MDPI, vol. 13(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    2. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    4. Li, Dezhi & Huang, Guanying & Zhu, Shiyao & Chen, Long & Wang, Jiangbo, 2021. "How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Pan, W. & Teng, Y., 2021. "A systematic investigation into the methodological variables of embodied carbon assessment of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. John Zacharias, 2021. "Addressing Global Climate Change With Big Data-Driven Urban Planning Policy," International Journal of E-Planning Research (IJEPR), IGI Global, vol. 10(4), pages 1-16, October.
    7. Nematchoua, Modeste Kameni, 2021. "Analysis and comparison of potential resources and new energy policy of Madagascar island; A review," Renewable Energy, Elsevier, vol. 171(C), pages 747-763.
    8. Fabiana Silvero & Fernanda Rodrigues & Sergio Montelpare, 2019. "A Parametric Study and Performance Evaluation of Energy Retrofit Solutions for Buildings Located in the Hot-Humid Climate of Paraguay—Sensitivity Analysis," Energies, MDPI, vol. 12(3), pages 1-27, January.
    9. Víctor Echarri-Iribarren & Cristina Sotos-Solano & Almudena Espinosa-Fernández & Raúl Prado-Govea, 2019. "The Passivhaus Standard in the Spanish Mediterranean: Evaluation of a House’s Thermal Behaviour of Enclosures and Airtightness," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    10. Xiaojun Liu & Xin Chen & Mehdi Shahrestani, 2020. "Optimization of Insulation Thickness of External Walls of Residential Buildings in Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    11. Khadidja Rahmani & Atef Ahriz & Nahla Bouaziz, 2022. "Development of a New Residential Energy Management Approach for Retrofit and Transition, Based on Hybrid Energy Sources," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    12. Robert Dylewski & Janusz Adamczyk, 2021. "Optimum Thickness of Thermal Insulation with Both Economic and Ecological Costs of Heating and Cooling," Energies, MDPI, vol. 14(13), pages 1-17, June.
    13. Jung Ho Kim & Young Il Kim, 2021. "Optimal Combination of External Wall Insulation Thickness and Surface Solar Reflectivity of Non-Residential Buildings in the Korean Peninsula," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    14. Changjian Wang & Fei Wang & Gengzhi Huang & Yang Wang & Xinlin Zhang & Yuyao Ye & Xiaojie Lin & Zhongwu Zhang, 2021. "Examining the Dynamics and Determinants of Energy Consumption in China’s Megacity Based on Industrial and Residential Perspectives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    15. Rebecca Tunstall, 2023. "An empirical test of measures of housing degrowth: Learning from the limited experience of England and Wales, 1981–2011," Urban Studies, Urban Studies Journal Limited, vol. 60(7), pages 1285-1303, May.
    16. Jacek Kasperski & Oluwafunmilola Oladipo, 2023. "Energy, Volume and Cost Analyses of High Temperature Seasonal Thermal Storage for Plus Energy House," Energies, MDPI, vol. 16(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.