IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4042-d828796.html
   My bibliography  Save this article

Selection of Energy Improvement Factors and Economic Analysis of Standard MDU Complexes in Korean Metropolitan Regions

Author

Listed:
  • Ki-Won Lee

    (Department of Architectural Engineering, Graduate School, Seoul National University of Science and Technology, Seoul 01811, Korea)

  • Young Il Kim

    (School of Architecture, Seoul National University of Science and Technology, Seoul 01811, Korea)

Abstract

In Korea, energy consumption within apartments in metropolitan areas accounted for more than 33% of the total energy consumption by buildings in 2020. In this study, in order to increase the energy efficiency of MDU (multi-dwelling unit) complexes in metropolitan areas, improvement factors and economic effects were analyzed using ECO2, a building energy efficiency evaluation program. Optimal improvement measures are proposed, to reduce the economic burden on users by applying energy saving technologies. This study was conducted in four stages; in the first stage, using ECO2 software, five types of apartments were selected as standards among 46 complexes. Standard MDUs were selected if more than two factors were satisfied from among the following: (1) household type, (2) average exterior wall insulation and window performance, (3) average energy consumption and demand per unit area per year, (4) average applied facility system, and (5) average monthly energy demand per unit area. In the second stage, improvement factors were derived by analyzing the 10 most recent energy efficient MDU complexes. The third stage involved analysis of the energy saving effect generated by the improvement of windows and total heat exchangers in five selected complexes. Primary energy consumption per unit area per year improved from 158.8 to 132. kWh/m 2 y in complex E, which had been upgraded from ‘floor heating system’ to ‘total heat exchanger’. Finally, in the fourth stage, optimal improvement factors were selected for economic analysis. By simultaneously applying the optimal improvement factors, such as windows and total heat exchanger, to the M complex, primary energy consumption per unit area per year was improved from 147.6 to 111.4 kWh/m 2 y. When optimal improvement factors were applied to 59 m 2 , 74 m 2 , 84 m 2 types in complex M, life cycle cost savings of energy consumption for 30 years became $1384~1970.

Suggested Citation

  • Ki-Won Lee & Young Il Kim, 2022. "Selection of Energy Improvement Factors and Economic Analysis of Standard MDU Complexes in Korean Metropolitan Regions," Energies, MDPI, vol. 15(11), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4042-:d:828796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4042/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4042/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miimu Airaksinen & Pellervo Matilainen, 2011. "A Carbon Footprint of an Office Building," Energies, MDPI, vol. 4(8), pages 1-14, August.
    2. Zhang, Yurong & Wang, Jingjing & Hu, Fangfang & Wang, Yuanfeng, 2017. "Comparison of evaluation standards for green building in China, Britain, United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 262-271.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    2. Emanuele Bonamente & Franco Cotana, 2015. "Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis," Energies, MDPI, vol. 8(11), pages 1-17, November.
    3. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    4. Qing He & Haiyang Zhao & Lin Shen & Liuqun Dong & Ye Cheng & Ke Xu, 2019. "Factors Influencing Residents’ Intention toward Green Retrofitting of Existing Residential Buildings," Sustainability, MDPI, vol. 11(15), pages 1-23, August.
    5. Eleftheria Touloupaki & Theodoros Theodosiou, 2017. "Performance Simulation Integrated in Parametric 3D Modeling as a Method for Early Stage Design Optimization—A Review," Energies, MDPI, vol. 10(5), pages 1-18, May.
    6. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.
    7. Coma Bassas, Ester & Patterson, Joanne & Jones, Phillip, 2020. "A review of the evolution of green residential architecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    8. Leszczyna, Rafał, 2018. "Standards on cyber security assessment of smart grid," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 70-89.
    9. Tae-Hyoung Kim & Young-Sun Jeong, 2018. "Analysis of Energy-Related Greenhouse Gas Emission in the Korea’s Building Sector: Use National Energy Statistics," Energies, MDPI, vol. 11(4), pages 1-17, April.
    10. Yi Gao & Gaosheng Yang & Qiuhao Xie, 2020. "Spatial-Temporal Evolution and Driving Factors of Green Building Development in China," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    11. Kayaçetin, N.C. & Tanyer, A.M., 2020. "Embodied carbon assessment of residential housing at urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Sung-Lin Hsueh & Yuan Feng & Yue Sun & Ruqi Jia & Min-Ren Yan, 2021. "Using AI-MCDM Model to Boost Sustainable Energy System Development: A Case Study on Solar Energy and Rainwater Collection in Guangdong Province," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    13. Fenner, Andriel Evandro & Kibert, Charles Joseph & Woo, Junghoon & Morque, Shirley & Razkenari, Mohamad & Hakim, Hamed & Lu, Xiaoshu, 2018. "The carbon footprint of buildings: A review of methodologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1142-1152.
    14. Shuowen Zhou & Min Zhou & Yuanfeng Wang & Yuanlin Gao & Yinshan Liu & Chengcheng Shi & Yongmao Lu & Tong Zhou, 2020. "Bibliometric and Social Network Analysis of Civil Engineering Sustainability Research from 2015 to 2019," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
    15. Shengqin Zheng & Ye Cheng & Yingjie Ju, 2019. "Understanding the Intention and Behavior of Renting Houses among the Young Generation: Evidence from Jinan, China," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    16. Xiaojuan Li & Chen Wang & Mukhtar A. Kassem & Shu-Yi Wu & Tai-Bing Wei, 2022. "Case Study on Carbon Footprint Life-Cycle Assessment for Construction Delivery Stage in China," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
    17. Baoquan Cheng & Jingwei Li & Vivian W. Y. Tam & Ming Yang & Dong Chen, 2020. "A BIM-LCA Approach for Estimating the Greenhouse Gas Emissions of Large-Scale Public Buildings: A Case Study," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    18. Hao Wang & Pen-Chi Chiang & Yanpeng Cai & Chunhui Li & Xuan Wang & Tse-Lun Chen & Shiming Wei & Qian Huang, 2018. "Application of Wall and Insulation Materials on Green Building: A Review," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    19. Ru Ji & Shilin Qu, 2019. "Investigation and Evaluation of Energy Consumption Performance for Hospital Buildings in China," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    20. Qingfeng Meng & Hongming Zhu & Zhen Li & Jianguo Du & Xiangyu Wang & Mi Jeong Kim, 2018. "How Green Building Product Decisions from Customers Can Be Transitioned to Manufacturers: An Agent-Based Model," Sustainability, MDPI, vol. 10(11), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4042-:d:828796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.