IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v113y2019ic4.html
   My bibliography  Save this article

A proposed simulation-based theoretical preconstruction process: The case of solar photovoltaic technology in South African shopping centres

Author

Listed:
  • van Vuuren, Dirk Johan
  • Marnewick, Annlizé
  • Pretorius, Jan Harm C.

Abstract

At present, simulation processes for determining the yield of PV plants are fairly unstructured. This research proposes a structured pre-assessment process to increase the electricity yield of a PV plant in South Africa throughout its life cycle. Furthermore, enhanced electricity yield and increased accuracy in estimating the yield of such a plant will result in a higher degree of return on investment, and reduce the propability of legal disputes between the parties involved. A shopping centre, consuming approximately 5000 kVA under maximum load, in Johannesburg, Gauteng, was used as a case study to apply the proposed pre-assessment of a solar PV plant. The pre-assessment includes analysing the load demand of the shopping centre (without the presence of the solar PV plant), relating that to the seasonal change and the subsequent average ambient temperature variation and conducting simulations in PVSyst 6.7.9 by permuting various variables within the software. The variables include investigating the effect of PV module orientation adjustment, the effect of PV module degradation on electricity yield over its lifespan and the effect of increasing the array-to-inverter ratio (DCpower/ACpower). The research found that by implementing the process, the electricity yield and return on investment will be increased.

Suggested Citation

  • van Vuuren, Dirk Johan & Marnewick, Annlizé & Pretorius, Jan Harm C., 2019. "A proposed simulation-based theoretical preconstruction process: The case of solar photovoltaic technology in South African shopping centres," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
  • Handle: RePEc:eee:rensus:v:113:y:2019:i:c:4
    DOI: 10.1016/j.rser.2019.109295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119305039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    2. Kichou, Sofiane & Silvestre, Santiago & Guglielminotti, Letizia & Mora-López, Llanos & Muñoz-Cerón, Emilio, 2016. "Comparison of two PV array models for the simulation of PV systems using five different algorithms for the parameters identification," Renewable Energy, Elsevier, vol. 99(C), pages 270-279.
    3. Shrivastava, R.L. & Vinod Kumar, & Untawale, S.P., 2017. "Modeling and simulation of solar water heater: A TRNSYS perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 126-143.
    4. Benghanem, M., 2011. "Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia," Applied Energy, Elsevier, vol. 88(4), pages 1427-1433, April.
    5. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    6. Bayer, Benjamin & Schäuble, Dominik & Ferrari, Michele, 2018. "International experiences with tender procedures for renewable energy – A comparison of current developments in Brazil, France, Italy and South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 305-327.
    7. Pfeiffer, Birte & Mulder, Peter, 2013. "Explaining the diffusion of renewable energy technology in developing countries," Energy Economics, Elsevier, vol. 40(C), pages 285-296.
    8. Le Roux, W.G., 2016. "Optimum tilt and azimuth angles for fixed solar collectors in South Africa using measured data," Renewable Energy, Elsevier, vol. 96(PA), pages 603-612.
    9. Budzianowski, Wojciech M. & Nantongo, Irene & Bamutura, Cleus & Rwema, Michel & Lyambai, Martin & Abimana, Colette & Akumu, Eric O. & Alokore, Yunus & Babalola, Samuel O. & Gachuri, Amon K.K. & Hefney, 2018. "Business models and innovativeness of potential renewable energy projects in Africa," Renewable Energy, Elsevier, vol. 123(C), pages 162-190.
    10. Walwyn, David Richard & Brent, Alan Colin, 2015. "Renewable energy gathers steam in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 390-401.
    11. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    12. Hussin, M.Z. & Omar, A.M. & Shaari, S. & Sin, N.D. Md, 2017. "Review of state-of-the-art: Inverter-to-array power ratio for thin – Film sizing technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 265-277.
    13. Silvestre, Santiago & Tahri, Ali & Tahri, Fatima & Benlebna, Soumiya & Chouder, Aissa, 2018. "Evaluation of the performance and degradation of crystalline silicon-based photovoltaic modules in the Saharan environment," Energy, Elsevier, vol. 152(C), pages 57-63.
    14. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    15. Fan, Yuling & Xia, Xiaohua, 2017. "A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance," Applied Energy, Elsevier, vol. 189(C), pages 327-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    2. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "Validation of a Simulation-Based Pre-Assessment Process for Solar Photovoltaic Technology Implemented on Rooftops of South African Shopping Centres," Sustainability, MDPI, vol. 13(5), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "Validation of a Simulation-Based Pre-Assessment Process for Solar Photovoltaic Technology Implemented on Rooftops of South African Shopping Centres," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    2. Dey, Sumon & Lakshmanan, Madan Kumar & Pesala, Bala, 2018. "Optimal solar tree design for increased flexibility in seasonal energy extraction," Renewable Energy, Elsevier, vol. 125(C), pages 1038-1048.
    3. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    4. Al Garni, Hassan Z. & Awasthi, Anjali & Wright, David, 2019. "Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia," Renewable Energy, Elsevier, vol. 133(C), pages 538-550.
    5. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    6. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Agrawal, Monika & Chhajed, Priyank & Chowdhury, Amartya, 2022. "Performance analysis of photovoltaic module with reflector: Optimizing orientation with different tilt scenarios," Renewable Energy, Elsevier, vol. 186(C), pages 10-25.
    8. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.
    9. Nicolás-Martín, Carolina & Santos-Martín, David & Chinchilla-Sánchez, Mónica & Lemon, Scott, 2020. "A global annual optimum tilt angle model for photovoltaic generation to use in the absence of local meteorological data," Renewable Energy, Elsevier, vol. 161(C), pages 722-735.
    10. Sungha Yoon & Jintae Park & Chaeyoung Lee & Sangkwon Kim & Yongho Choi & Soobin Kwak & Hyundong Kim & Junseok Kim, 2023. "Optimal Orientation of Solar Panels for Multi-Apartment Buildings," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    11. Shirazi, Ali Mohammad & Zomorodian, Zahra S. & Tahsildoost, Mohammad, 2019. "Techno-economic BIPV evaluation method in urban areas," Renewable Energy, Elsevier, vol. 143(C), pages 1235-1246.
    12. Chen, X.M. & Li, Y. & Zhao, B.Y. & Wang, R.Z., 2020. "Are the optimum angles of photovoltaic systems so important?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    13. Oh, Myeongchan & Kim, Jin-Young & Kim, Boyoung & Yun, Chang-Yeol & Kim, Chang Ki & Kang, Yong-Heack & Kim, Hyun-Goo, 2021. "Tolerance angle concept and formula for practical optimal orientation of photovoltaic panels," Renewable Energy, Elsevier, vol. 167(C), pages 384-394.
    14. Freitas, S. & Brito, M.C., 2019. "Non-cumulative only solar photovoltaics for electricity load-matching," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 271-283.
    15. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    16. Gardashov, Rauf & Eminov, Murad & Kara, Gökhan & Emecen Kara, Esma Gül & Mammadov, Tural & Huseynova, Xedce, 2020. "The optimum daily direction of solar panels in the highlands, derived by an analytical method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    17. Herrera-Romero, J.V. & Colorado-Garrido, D. & Escalante Soberanis, M.A. & Flota-Bañuelos, M., 2020. "Estimation of the optimum tilt angle of solar collectors in Coatzacoalcos, Veracruz," Renewable Energy, Elsevier, vol. 153(C), pages 615-623.
    18. Ullah, Asad & Imran, Hassan & Maqsood, Zaki & Butt, Nauman Zafar, 2019. "Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan," Renewable Energy, Elsevier, vol. 139(C), pages 830-843.
    19. Dag, H.I. & Buker, M.S., 2020. "Performance evaluation and degradation assessment of crystalline silicon based photovoltaic rooftop technologies under outdoor conditions," Renewable Energy, Elsevier, vol. 156(C), pages 1292-1300.
    20. Wang, Baichao & Liu, Yanfeng & Wang, Dengjia & Song, Cong & Fu, Zhiguo & Zhang, Cong, 2024. "A review of the photothermal-photovoltaic energy supply system for building in solar energy enrichment zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:113:y:2019:i:c:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.