IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v101y2019icp428-439.html
   My bibliography  Save this article

Is the environmental opportunity of retrofitting the residential sector worth the life cycle cost? A consequential assessment of a typical house in Quebec

Author

Listed:
  • Pedinotti-Castelle, Marianne
  • Astudillo, Miguel F.
  • Pineau, Pierre-Olivier
  • Amor, Ben

Abstract

The residential sector has a major role to play in the transition to green energy. The heating and cooling of buildings represents 40% of global energy consumption, while vast energy savings potential remains largely unexploited. Given the low turnover of housing stock and ambitious emission reduction targets, most of this potential will require retrofitting existing buildings. In this study, we investigate how to best take advantage of retrofits in the residential sector of Quebec (Canada) using environmental and economic criteria. Within the province, heating is mainly powered by electricity from renewable sources. We propose an approach based on a consequential life cycle assessment that focuses on marginal impacts combined with “consequential life cycle costing.” Seven alternatives using different heating systems and building envelopes are compared to a reference case, which consists of a typical detached house heated with electric baseboards. This approach permits an assessment of cost-efficiency and sustainable technological solutions. Our results show that the amount of energy saved by retrofits (especially for air source heat pumps with and without building envelop improvements) generates environmental and economic benefits. Furthermore, if the saved electricity is exported to replace natural gas, then the local electricity savings is quite beneficial. These results provide key new insights on the energy policies affecting the building sector, especially for regions in cold climates such as Quebec.

Suggested Citation

  • Pedinotti-Castelle, Marianne & Astudillo, Miguel F. & Pineau, Pierre-Olivier & Amor, Ben, 2019. "Is the environmental opportunity of retrofitting the residential sector worth the life cycle cost? A consequential assessment of a typical house in Quebec," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 428-439.
  • Handle: RePEc:eee:rensus:v:101:y:2019:i:c:p:428-439
    DOI: 10.1016/j.rser.2018.11.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118307706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.11.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Driessen, Josi M.A. & Fanti, Kostas A. & Glennon, Jeffrey C. & Neumann, Craig S. & Baskin-Sommers, Arielle R. & Brazil, Inti A., 2018. "A comparison of latent profiles in antisocial male offenders," Journal of Criminal Justice, Elsevier, vol. 57(C), pages 47-55.
    2. ., 2018. "Comparing locational policies in Secondary Capital Cities," Chapters, in: Varieties of Capital Cities, chapter 8, pages 160-186, Edward Elgar Publishing.
    3. Astudillo, Miguel F. & Vaillancourt, Kathleen & Pineau, Pierre-Olivier & Amor, Ben, 2017. "Can the household sector reduce global warming mitigation costs? sensitivity to key parameters in a TIMES techno-economic energy model," Applied Energy, Elsevier, vol. 205(C), pages 486-498.
    4. Sedjo, ROger A., 2013. "Comparative Life Cycle Assessments: Carbon Neutrality and Wood Biomass Energy," RFF Working Paper Series dp-13-11, Resources for the Future.
    5. Ballarini, Ilaria & Corrado, Vincenzo & Madonna, Francesco & Paduos, Simona & Ravasio, Franco, 2017. "Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology," Energy Policy, Elsevier, vol. 105(C), pages 148-160.
    6. Descateaux, Paul & Astudillo, Miguel F. & Amor, Mourad Ben, 2016. "Assessing the life cycle environmental benefits of renewable distributed generation in a context of carbon taxes: The case of the Northeastern American market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1178-1189.
    7. Bartolozzi, Irene & Rizzi, Francesco & Frey, Marco, 2017. "Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 408-420.
    8. Pehnt, Martin & Oeser, Michael & Swider, Derk J., 2008. "Consequential environmental system analysis of expected offshore wind electricity production in Germany," Energy, Elsevier, vol. 33(5), pages 747-759.
    9. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    10. Richard Plevin & Mark Delucchi & Felix Creutzig, 2014. "Response to Comments on “Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation …”," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 468-470, May.
    11. Ristimäki, Miro & Säynäjoki, Antti & Heinonen, Jukka & Junnila, Seppo, 2013. "Combining life cycle costing and life cycle assessment for an analysis of a new residential district energy system design," Energy, Elsevier, vol. 63(C), pages 168-179.
    12. Amor, Mourad Ben & Lesage, Pascal & Pineau, Pierre-Olivier & Samson, Réjean, 2010. "Can distributed generation offer substantial benefits in a Northeastern American context? A case study of small-scale renewable technologies using a life cycle methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2885-2895, December.
    13. Amor, Mourad Ben & Gaudreault, Caroline & Pineau, Pierre-Olivier & Samson, Réjean, 2014. "Implications of integrating electricity supply dynamics into life cycle assessment: A case study of renewable distributed generation," Renewable Energy, Elsevier, vol. 69(C), pages 410-419.
    14. Rinne, S. & Syri, S., 2013. "Heat pumps versus combined heat and power production as CO2 reduction measures in Finland," Energy, Elsevier, vol. 57(C), pages 308-318.
    15. Oecd, 2018. "How do primary and secondary teachers compare?," Education Indicators in Focus 58, OECD Publishing.
    16. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian, 2015. "Techno-economic evaluation of internal combustion engine based cogeneration system retrofits in Canadian houses – A preliminary study," Applied Energy, Elsevier, vol. 140(C), pages 171-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carroll, P. & Chesser, M. & Lyons, P., 2020. "Air Source Heat Pumps field studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Fajardy, M. & Reiner, D M., 2020. "An overview of the electrification of residential and commercial heating and cooling and prospects for decarbonisation," Cambridge Working Papers in Economics 20120, Faculty of Economics, University of Cambridge.
    3. He, Qiong & Hossain, Md. Uzzal & Ng, S. Thomas & Augenbroe, Godfried, 2021. "Identifying practical sustainable retrofit measures for existing high-rise residential buildings in various climate zones through an integrated energy-cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Leandra Vanbaelinghem & Andrea Costantino & Florian Grassauer & Nathan Pelletier, 2024. "Alternative Heating, Ventilation, and Air Conditioning (HVAC) System Considerations for Reducing Energy Use and Emissions in Egg Industries in Temperate and Continental Climates: A Systematic Review o," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    5. Marta Bottero & Federico Dell’Anna & Vito Morgese, 2021. "Evaluating the Transition Towards Post-Carbon Cities: A Literature Review," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    6. Patricia Schneider-Marin & Anne Winkelkotte & Werner Lang, 2022. "Integrating Environmental and Economic Perspectives in Building Design," Sustainability, MDPI, vol. 14(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Descateaux, Paul & Astudillo, Miguel F. & Amor, Mourad Ben, 2016. "Assessing the life cycle environmental benefits of renewable distributed generation in a context of carbon taxes: The case of the Northeastern American market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1178-1189.
    2. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    3. Maria Milousi & Athanasios Pappas & Andreas P. Vouros & Giouli Mihalakakou & Manolis Souliotis & Spiros Papaefthimiou, 2022. "Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment," Energies, MDPI, vol. 15(15), pages 1-30, August.
    4. Jones, Christopher & Gilbert, Paul & Raugei, Marco & Mander, Sarah & Leccisi, Enrica, 2017. "An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation," Energy Policy, Elsevier, vol. 100(C), pages 350-358.
    5. Kljajić, Miroslav V. & Anđelković, Aleksandar S. & Hasik, Vaclav & Munćan, Vladimir M. & Bilec, Melissa, 2020. "Shallow geothermal energy integration in district heating system: An example from Serbia," Renewable Energy, Elsevier, vol. 147(P2), pages 2791-2800.
    6. Greening, Benjamin & Azapagic, Adisa, 2013. "Environmental impacts of micro-wind turbines and their potential to contribute to UK climate change targets," Energy, Elsevier, vol. 59(C), pages 454-466.
    7. Lorente-Rubio, C. & García-Alcaraz, J.L. & Sáenz-Diez Muro, J.C. & Martínez-Cámara, E. & Bruzzone, A. & Blanco-Fernández, J., 2024. "Scenarios for replacement of electric resistive space heating by a geothermal heat pump - Environmental amortization," Renewable Energy, Elsevier, vol. 227(C).
    8. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    9. Amor, Mourad Ben & Gaudreault, Caroline & Pineau, Pierre-Olivier & Samson, Réjean, 2014. "Implications of integrating electricity supply dynamics into life cycle assessment: A case study of renewable distributed generation," Renewable Energy, Elsevier, vol. 69(C), pages 410-419.
    10. Frapin, Marie & Roux, Charlotte & Assoumou, Edi & Peuportier, Bruno, 2022. "Modelling long-term and short-term temporal variation and uncertainty of electricity production in the life cycle assessment of buildings," Applied Energy, Elsevier, vol. 307(C).
    11. Papageorgiou, Asterios & Ashok, Archana & Hashemi Farzad, Tabassom & Sundberg, Cecilia, 2020. "Climate change impact of integrating a solar microgrid system into the Swedish electricity grid," Applied Energy, Elsevier, vol. 268(C).
    12. Kaldellis, J.K. & Apostolou, D., 2017. "Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 108(C), pages 72-84.
    13. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    14. Susana Silva & Erika Laranjeira & Isabel Soares, 2021. "Health Benefits from Renewable Electricity Sources: A Review," Energies, MDPI, vol. 14(20), pages 1-17, October.
    15. Jani Laine & Juudit Ottelin & Jukka Heinonen & Seppo Junnila, 2017. "Consequential Implications of Municipal Energy System on City Carbon Footprints," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    16. Manfred Lenzen & Roberto Schaeffer, 2012. "Historical and potential future contributions of power technologies to global warming," Climatic Change, Springer, vol. 112(3), pages 601-632, June.
    17. Yang, Jin & Chen, Bin, 2013. "Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 559-568.
    18. Jukka Heinonen & Jani Laine & Karoliina Pluuman & Eeva-Sofia Säynäjoki & Risto Soukka & Seppo Junnila, 2015. "Planning for a Low Carbon Future? Comparing Heat Pumps and Cogeneration as the Energy System Options for a New Residential Area," Energies, MDPI, vol. 8(9), pages 1-18, August.
    19. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    20. Walker, Shalika & Labeodan, Timilehin & Boxem, Gert & Maassen, Wim & Zeiler, Wim, 2018. "An assessment methodology of sustainable energy transition scenarios for realizing energy neutral neighborhoods," Applied Energy, Elsevier, vol. 228(C), pages 2346-2360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:101:y:2019:i:c:p:428-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.