IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics0306261921014173.html
   My bibliography  Save this article

Modelling long-term and short-term temporal variation and uncertainty of electricity production in the life cycle assessment of buildings

Author

Listed:
  • Frapin, Marie
  • Roux, Charlotte
  • Assoumou, Edi
  • Peuportier, Bruno

Abstract

The building stock is a major contributor to energy consumption and greenhouse gases emissions (GHG), which can be evaluated using life cycle assessment (LCA). Electrification of buildings, e.g. replacing fuel and gas boilers with heat pumps, in order to reduce these emissions is often seen as an option, but this will have short term effects by increasing peak demand, and long term effects by requiring more electricity production capacities. In this paper, a methodology to account for such interaction in LCA is presented. It connects three models addressing: market allocation on a national scale over a long term period, short term variation (i.e. seasonal, daily and hourly) of the electricity mix also on a national scale, and building energy simulation at the scale of one building. This methodology has been applied to a case study including a sample of buildings in the French context, but it can be used in other countries. Six buildings have been studied over 100 years considering 50 energy transition scenarios. Results show that the environmental impacts vary more depending on the scenarios than on the types of the building. Marginal mixes considered in consequential LCA are mainly composed of coal, gas, nuclear and peak technology production which explains the highest values of the different impacts compared to average mixes used in attributional LCA. This approach allows to address uncertainties related to electricity production.

Suggested Citation

  • Frapin, Marie & Roux, Charlotte & Assoumou, Edi & Peuportier, Bruno, 2022. "Modelling long-term and short-term temporal variation and uncertainty of electricity production in the life cycle assessment of buildings," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014173
    DOI: 10.1016/j.apenergy.2021.118141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921014173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Messagie, Maarten & Mertens, Jan & Oliveira, Luis & Rangaraju, Surendraprabu & Sanfelix, Javier & Coosemans, Thierry & Van Mierlo, Joeri & Macharis, Cathy, 2014. "The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment," Applied Energy, Elsevier, vol. 134(C), pages 469-476.
    2. Vuarnoz, Didier & Jusselme, Thomas, 2018. "Temporal variations in the primary energy use and greenhouse gas emissions of electricity provided by the Swiss grid," Energy, Elsevier, vol. 161(C), pages 573-582.
    3. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    4. Victoria, Marta & Gallego-Castillo, Cristobal, 2019. "Hourly-resolution analysis of electricity decarbonization in Spain (2017–2030)," Applied Energy, Elsevier, vol. 233, pages 674-690.
    5. García-Gusano, Diego & Garraín, Daniel & Dufour, Javier, 2017. "Prospective life cycle assessment of the Spanish electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 21-34.
    6. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Nijs, Wouter & Politis, Savvas, 2020. "Analysing the influence of trade, technology learning and policy on the employment prospects of wind and solar energy deployment: The EU case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    7. Soimakallio, Sampo & Kiviluoma, Juha & Saikku, Laura, 2011. "The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review," Energy, Elsevier, vol. 36(12), pages 6705-6713.
    8. Amorim, Filipa & Simoes, Sofia G. & Siggini, Gildas & Assoumou, Edi, 2020. "Introducing climate variability in energy systems modelling," Energy, Elsevier, vol. 206(C).
    9. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    10. Amor, Mourad Ben & Gaudreault, Caroline & Pineau, Pierre-Olivier & Samson, Réjean, 2014. "Implications of integrating electricity supply dynamics into life cycle assessment: A case study of renewable distributed generation," Renewable Energy, Elsevier, vol. 69(C), pages 410-419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gkousis, Spiros & Thomassen, Gwenny & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Dynamic life cycle assessment of geothermal heat production from medium enthalpy hydrothermal resources," Applied Energy, Elsevier, vol. 328(C).
    2. Zhou, Yuekuan & Zheng, Siqian, 2024. "A co-simulated material-component-system-district framework for climate-adaption and sustainability transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahlia Byles & Salman Mohagheghi, 2023. "Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    2. Simone Cornago & Yee Shee Tan & Carlo Brondi & Seeram Ramakrishna & Jonathan Sze Choong Low, 2022. "Systematic Literature Review on Dynamic Life Cycle Inventory: Towards Industry 4.0 Applications," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    3. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.
    4. Nils Seckinger & Peter Radgen, 2021. "Dynamic Prospective Average and Marginal GHG Emission Factors—Scenario-Based Method for the German Power System until 2050," Energies, MDPI, vol. 14(9), pages 1-22, April.
    5. Vuarnoz, Didier & Jusselme, Thomas, 2018. "Temporal variations in the primary energy use and greenhouse gas emissions of electricity provided by the Swiss grid," Energy, Elsevier, vol. 161(C), pages 573-582.
    6. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    7. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    8. Assoumou, Edi & McIsaac, Florent, 2022. "Côte d'Ivoire's electricity challenge in 2050: Reconciling economic development and climate commitments," Energy Policy, Elsevier, vol. 160(C).
    9. Descateaux, Paul & Astudillo, Miguel F. & Amor, Mourad Ben, 2016. "Assessing the life cycle environmental benefits of renewable distributed generation in a context of carbon taxes: The case of the Northeastern American market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1178-1189.
    10. Asdrubali, F. & Baggio, P. & Prada, A. & Grazieschi, G. & Guattari, C., 2020. "Dynamic life cycle assessment modelling of a NZEB building," Energy, Elsevier, vol. 191(C).
    11. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    12. Pedinotti-Castelle, Marianne & Astudillo, Miguel F. & Pineau, Pierre-Olivier & Amor, Ben, 2019. "Is the environmental opportunity of retrofitting the residential sector worth the life cycle cost? A consequential assessment of a typical house in Quebec," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 428-439.
    13. Gkousis, Spiros & Thomassen, Gwenny & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Dynamic life cycle assessment of geothermal heat production from medium enthalpy hydrothermal resources," Applied Energy, Elsevier, vol. 328(C).
    14. Matthias Buyle & Amaryllis Audenaert & Pieter Billen & Katrien Boonen & Steven Van Passel, 2019. "The Future of Ex-Ante LCA? Lessons Learned and Practical Recommendations," Sustainability, MDPI, vol. 11(19), pages 1-24, October.
    15. Papageorgiou, Asterios & Ashok, Archana & Hashemi Farzad, Tabassom & Sundberg, Cecilia, 2020. "Climate change impact of integrating a solar microgrid system into the Swedish electricity grid," Applied Energy, Elsevier, vol. 268(C).
    16. Olkkonen, Ville & Hirvonen, Janne & Heljo, Juhani & Syri, Sanna, 2021. "Effectiveness of building stock sustainability measures in a low-carbon energy system: A scenario analysis for Finland until 2050," Energy, Elsevier, vol. 235(C).
    17. Ji, Ling & Liang, Sai & Qu, Shen & Zhang, Yanxia & Xu, Ming & Jia, Xiaoping & Jia, Yingtao & Niu, Dongxiao & Yuan, Jiahai & Hou, Yong & Wang, Haikun & Chiu, Anthony S.F. & Hu, Xiaojun, 2016. "Greenhouse gas emission factors of purchased electricity from interconnected grids," Applied Energy, Elsevier, vol. 184(C), pages 751-758.
    18. Ingrid Munné-Collado & Fabio Maria Aprà & Pol Olivella-Rosell & Roberto Villafáfila-Robles, 2019. "The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes," Energies, MDPI, vol. 12(23), pages 1-22, November.
    19. Nicole A. Ryan & Jeremiah X. Johnson & Gregory A. Keoleian & Geoffrey M. Lewis, 2018. "Decision Support Algorithm for Evaluating Carbon Dioxide Emissions from Electricity Generation in the United States," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1318-1330, December.
    20. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.