IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp360-368.html
   My bibliography  Save this article

Simulation and economic evaluation of biomass gasification with sets for heating, cooling and power production

Author

Listed:
  • Wang, Hairong
  • Yan, Jianbo
  • Dong, Liang

Abstract

In this work, syngas was used directly as fuel source for the renewable CCHP system, which can be producted through biomass gasification process. The advantages and limitation of entrained flow gasifier are compared, followed by discussion on the key parameters that are critical for the optimum production of syngas. Gasification agent of 450 °C temperature and 30 atm pressure has been proposed as a optical solution to a entrained flow gasifier using air as gasification agent at 0.27 ER (oxygen equivalence ratio), in that it provides a syngas of 5.665 MJ/m3 LHV and up to 77% gasification efficiency. Depending on the key parameters of gasification process, the properties of syngas produced can be varied. It is thus essential to thoroughly understand the cogeneration system to identify the suitable methods for a renewable CCHP system. These process was simulated using Aspen Plus to perform the rigorous material and energy balances. The results obtained from simulation and experiment agreed well. This paper later focused on economic evaluation of the entire process, as well as the environmental benefits. The renewable CCHP system could able to attain lower CO2 and SO2 emission with total energy efficiency and gas yield of 75.43% and 2.476 m3/kg respectively.

Suggested Citation

  • Wang, Hairong & Yan, Jianbo & Dong, Liang, 2016. "Simulation and economic evaluation of biomass gasification with sets for heating, cooling and power production," Renewable Energy, Elsevier, vol. 99(C), pages 360-368.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:360-368
    DOI: 10.1016/j.renene.2016.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116305973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takeharu Hasegawa, 2010. "Gas Turbine Combustion and Ammonia Removal Technology of Gasified Fuels," Energies, MDPI, vol. 3(3), pages 1-115, March.
    2. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    3. Maraver, Daniel & Sin, Ana & Sebastián, Fernando & Royo, Javier, 2013. "Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation," Energy, Elsevier, vol. 57(C), pages 17-23.
    4. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang, 2012. "Multi-objective optimization design and operation strategy analysis of BCHP system based on life cycle assessment," Energy, Elsevier, vol. 37(1), pages 405-416.
    5. Ganesh, Anuradda & Banerjee, Rangan, 2001. "Biomass pyrolysis for power generation — a potential technology," Renewable Energy, Elsevier, vol. 22(1), pages 9-14.
    6. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    7. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    8. Mohammed, M.A.A. & Salmiaton, A. & Wan Azlina, W.A.K.G. & Mohammad Amran, M.S. & Fakhru'l-Razi, A. & Taufiq-Yap, Y.H., 2011. "Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1258-1270, February.
    9. Liszka, Marcin & Malik, Tomasz & Budnik, Michał & Ziębik, Andrzej, 2013. "Comparison of IGCC (integrated gasification combined cycle) and CFB (circulating fluidized bed) cogeneration plants equipped with CO2 removal," Energy, Elsevier, vol. 58(C), pages 86-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    2. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Cheng, Zeyang & Liu, Zexi, 2020. "Study on the effect of gasification agents on the integrated system of biomass gasification combined cycle and oxy-fuel combustion," Energy, Elsevier, vol. 206(C).
    3. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    4. Aghaalikhani, Arash & Schmid, Johannes C. & Borello, Domenico & Fuchs, Joseph & Benedikt, Florian & Hofbauer, Herman & Rispoli, Franco & Henriksen, Ulrick B. & Sárossy, Zsuzsa & Cedola, Luca, 2019. "Detailed modelling of biomass steam gasification in a dual fluidized bed gasifier with temperature variation," Renewable Energy, Elsevier, vol. 143(C), pages 703-718.
    5. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    6. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & He, Tianzhi & Li, Juan, 2019. "Study on the biomass-based integrated gasification combined cycle with negative CO2 emissions under different temperatures and pressures," Energy, Elsevier, vol. 179(C), pages 571-580.
    7. Zhang, Xiaofeng & Yan, Renshi & Zeng, Rong & Zhu, Ruilin & Kong, Xiaoying & He, Yecong & Li, Hongqiang, 2022. "Integrated performance optimization of a biomass-based hybrid hydrogen/thermal energy storage system for building and hydrogen vehicles," Renewable Energy, Elsevier, vol. 187(C), pages 801-818.
    8. Wang, Jiangjiang & Mao, Tianzhi & Wu, Jing, 2017. "Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification," Energy, Elsevier, vol. 139(C), pages 871-882.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    2. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    3. KS Rajmohan & C Ramya & Sunita Varjani, 2021. "Trends and advances in bioenergy production and sustainable solid waste management," Energy & Environment, , vol. 32(6), pages 1059-1085, September.
    4. How, Bing Shen & Ngan, Sue Lin & Hong, Boon Hooi & Lam, Hon Loong & Ng, Wendy Pei Qin & Yusup, Suzana & Ghani, Wan Azlina Wan Abd Karim & Kansha, Yasuki & Chan, Yi Herng & Cheah, Kin Wai & Shahbaz, Mu, 2019. "An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    6. Maraver, Daniel & Sin, Ana & Sebastián, Fernando & Royo, Javier, 2013. "Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation," Energy, Elsevier, vol. 57(C), pages 17-23.
    7. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    8. Ahmad, Farah B. & Zhang, Zhanying & Doherty, William O.S. & O'Hara, Ian M., 2019. "The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 386-411.
    9. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    10. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    11. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    12. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    13. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    14. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    15. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    16. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    17. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    18. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    19. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    20. He, Chao & Zhang, Quanguo & Ren, Jingzheng & Li, Zhaoling, 2017. "Combined cooling heating and power systems: Sustainability assessment under uncertainties," Energy, Elsevier, vol. 139(C), pages 755-766.

    More about this item

    Keywords

    Biomass; Syngas; CCHP; Aspen plus;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:360-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.