IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp315-324.html
   My bibliography  Save this article

Optimal operation of autonomous microgrid including wind turbines

Author

Listed:
  • Foroutan, Vahid B.
  • Moradi, Mohammad H.
  • Abedini, Mohammad

Abstract

This paper gives a novel hybrid optimization method to find optimal sitting and operation of an autonomous MG at the same time. The operation is optimized via finding the optimal droop gain parameters of DGs. The optimization problem is formulated as a multi-objective problem where the objectives are applied to minimize the fuel consumption of DGs and to improve the voltage profile and stability of MG subject to operational and security constraints. A hybrid algorithm, named HS-GA, is developed to solve the paper optimization problem. A new formulation of power flow is derived to run the proposed algorithm where the steady state frequency of system, reference frequency, reference voltage and droop coefficients of DGs, based on a droop controller, are considered as optimization variables. The performance of the paper approach is compared with other optimization and non-optimization methods in MG with 33and 69 buses using MATLAB. The performance of the proposed method is compared with a method that the parameters of DGs are pre-determined without conducting any optimization process. The results show, which optimized droop parameters improves the operation of the MG.

Suggested Citation

  • Foroutan, Vahid B. & Moradi, Mohammad H. & Abedini, Mohammad, 2016. "Optimal operation of autonomous microgrid including wind turbines," Renewable Energy, Elsevier, vol. 99(C), pages 315-324.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:315-324
    DOI: 10.1016/j.renene.2016.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116306048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khorramdel, Benyamin & Raoofat, Mahdi, 2012. "Optimal stochastic reactive power scheduling in a microgrid considering voltage droop scheme of DGs and uncertainty of wind farms," Energy, Elsevier, vol. 45(1), pages 994-1006.
    2. Moradi, Mohammad Hassan & Abedini, Mohammad & Hosseinian, S. Mahdi, 2015. "Improving operation constraints of microgrid using PHEVs and renewable energy sources," Renewable Energy, Elsevier, vol. 83(C), pages 543-552.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krkoleva Mateska, Aleksandra & Borozan, Vesna & Krstevski, Petar & Taleski, Rubin, 2018. "Controllable load operation in microgrids using control scheme based on gossip algorithm," Applied Energy, Elsevier, vol. 210(C), pages 1336-1346.
    2. Moradi, Mohammad H. & Foroutan, Vahid Bahrami & Abedini, Mohammad, 2017. "Power flow analysis in islanded Micro-Grids via modeling different operational modes of DGs: A review and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 248-262.
    3. Abdi, Hamdi & Beigvand, Soheil Derafshi & Scala, Massimo La, 2017. "A review of optimal power flow studies applied to smart grids and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 742-766.
    4. Maen Z. Kreishan & Ahmed F. Zobaa, 2021. "Optimal Allocation and Operation of Droop-Controlled Islanded Microgrids: A Review," Energies, MDPI, vol. 14(15), pages 1-45, July.
    5. Basu, M., 2023. "Dynamic optimal power flow for isolated microgrid incorporating renewable energy sources," Energy, Elsevier, vol. 264(C).
    6. Mukhopadhyay, Bineeta & Das, Debapriya, 2021. "Optimal multi-objective expansion planning of a droop-regulated islanded microgrid," Energy, Elsevier, vol. 218(C).
    7. Jithendranath, J. & Das, Debapriya & Guerrero, Josep M., 2021. "Probabilistic optimal power flow in islanded microgrids with load, wind and solar uncertainties including intermittent generation spatial correlation," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    2. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    3. Abedini, Mohammad & Abedini, Moein, 2017. "Optimizing energy management and control of distributed generation resources in islanded microgrids," Utilities Policy, Elsevier, vol. 48(C), pages 32-40.
    4. Hamed Moazami Goodarzi & Mohammad Hosein Kazemi, 2017. "A Novel Optimal Control Method for Islanded Microgrids Based on Droop Control Using the ICA-GA Algorithm," Energies, MDPI, vol. 10(4), pages 1-17, April.
    5. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2014. "A mathematical model for the optimal operation of the University of Genoa Smart Polygeneration Microgrid: Evaluation of technical, economic and environmental performance indicators," Energy, Elsevier, vol. 64(C), pages 912-922.
    6. Abdi, Hamdi & Beigvand, Soheil Derafshi & Scala, Massimo La, 2017. "A review of optimal power flow studies applied to smart grids and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 742-766.
    7. Ji, Bin & Yuan, Xiaohui & Chen, Zhihuan & Tian, Hao, 2014. "Improved gravitational search algorithm for unit commitment considering uncertainty of wind power," Energy, Elsevier, vol. 67(C), pages 52-62.
    8. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.
    9. Muhammad Shahzad Nazir & Zhang Chu & Ahmad N. Abdalla & Hong Ki An & Sayed M. Eldin & Ahmed Sayed M. Metwally & Patrizia Bocchetta & Muhammad Sufyan Javed, 2022. "Study of an Optimized Micro-Grid’s Operation with Electrical Vehicle-Based Hybridized Sustainable Algorithm," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    10. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part I: Active-Reactive Optimal Power Flow with Reactive Power of Wind Stations," Energies, MDPI, vol. 9(3), pages 1-12, February.
    11. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    12. Prakash, K. & Ali, M. & Hossain, M A & Kumar, Nallapaneni Manoj & Islam, M.R. & Macana, C.A. & Chopra, Shauhrat S. & Pota, H.R., 2022. "Planning battery energy storage system in line with grid support parameters enables circular economy aligned ancillary services in low voltage networks," Renewable Energy, Elsevier, vol. 201(P1), pages 802-820.
    13. Xiuyun Wang & Shaoxin Chen & Yibing Zhou & Jian Wang & Yang Cui, 2018. "Optimal Dispatch of Microgrid with Combined Heat and Power System Considering Environmental Cost," Energies, MDPI, vol. 11(10), pages 1-23, September.
    14. Cui, Jia & Yu, Renzhe & Zhao, Dongbo & Yang, Junyou & Ge, Weichun & Zhou, Xiaoming, 2019. "Intelligent load pattern modeling and denoising using improved variational mode decomposition for various calendar periods," Applied Energy, Elsevier, vol. 247(C), pages 480-491.
    15. Bhatti, Abdul Rauf & Salam, Zainal, 2018. "A rule-based energy management scheme for uninterrupted electric vehicles charging at constant price using photovoltaic-grid system," Renewable Energy, Elsevier, vol. 125(C), pages 384-400.
    16. Heba M. Abdullah & Rashad M. Kamel & Anas Tahir & Azzam Sleit & Adel Gastli, 2020. "The Simultaneous Impact of EV Charging and PV Inverter Reactive Power on the Hosting Distribution System’s Performance: A Case Study in Kuwait," Energies, MDPI, vol. 13(17), pages 1-22, August.
    17. Maen Z. Kreishan & Ahmed F. Zobaa, 2021. "Optimal Allocation and Operation of Droop-Controlled Islanded Microgrids: A Review," Energies, MDPI, vol. 14(15), pages 1-45, July.
    18. Zubo, Rana.H.A. & Mokryani, Geev & Rajamani, Haile-Selassie & Aghaei, Jamshid & Niknam, Taher & Pillai, Prashant, 2017. "Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1177-1198.
    19. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Risk management of wind farm micro-siting using an enhanced genetic algorithm with simulation optimization," Renewable Energy, Elsevier, vol. 107(C), pages 508-521.
    20. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Oscar Núñez-Mata, 2020. "Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures," Energies, MDPI, vol. 13(3), pages 1-32, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:315-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.