IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp689-696.html
   My bibliography  Save this article

Cascade closed-loop control of solar trackers applied to HCPV systems

Author

Listed:
  • Garrido, Ruben
  • Díaz, Arturo

Abstract

High concentration photovoltaic (HCPV) modules require a high precision tracking system for reaching their highest conversion efficiency. One way to accomplish this goal is by using a closed-loop mechanism and a sun sensor to track the sunlight. This paper proposes a cascade control algorithm capable of achieving a sun tracking error of 1′ for its application in high concentration photovoltaic systems. The algorithm follows an inner loop-outer loop topology. The inner loop employs a Nonlinear Proportional-Proportional Integral (NP-PI) controller and the outer loop resorts on a Proportional Integral (PI) controller. A tuning procedure for setting up the cascade controller is also described. Experiments on a laboratory prototype compare the performance of the proposed cascade controller with a PI controller not resorting on an inner loop. These outcomes show that the proposed control law provides improved tracking accuracy with less actuator wear.

Suggested Citation

  • Garrido, Ruben & Díaz, Arturo, 2016. "Cascade closed-loop control of solar trackers applied to HCPV systems," Renewable Energy, Elsevier, vol. 97(C), pages 689-696.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:689-696
    DOI: 10.1016/j.renene.2016.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116305432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fathabadi, Hassan, 2016. "Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems," Applied Energy, Elsevier, vol. 173(C), pages 448-459.
    2. Yao, Yingxue & Hu, Yeguang & Gao, Shengdong & Yang, Gang & Du, Jinguang, 2014. "A multipurpose dual-axis solar tracker with two tracking strategies," Renewable Energy, Elsevier, vol. 72(C), pages 88-98.
    3. Fathabadi, Hassan, 2016. "Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators," Renewable Energy, Elsevier, vol. 95(C), pages 485-494.
    4. Chemisana, Daniel, 2011. "Building Integrated Concentrating Photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 603-611, January.
    5. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Salah, Mohieddine & Ben Nasrallah, Sassi, 2016. "Design and construction of sun tracking systems for solar parabolic concentrator displacement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1419-1429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Díaz-Báñez, José-Miguel & Higes-López, José-Manuel & Pérez-Cutiño, Miguel-Angel & Valverde, Juan, 2024. "Optimal energy collection with rotational movement constraints in concentrated solar power plants," European Journal of Operational Research, Elsevier, vol. 317(2), pages 631-642.
    2. Satué, Manuel G. & Castaño, Fernando & Ortega, Manuel G. & Rubio, Francisco R., 2020. "Power feedback strategy based on efficiency trajectory analysis for HCPV sun tracking," Renewable Energy, Elsevier, vol. 161(C), pages 65-76.
    3. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Cătălin Alexandru, 2024. "Simulation and Optimization of a Dual-Axis Solar Tracking Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-32, March.
    5. Cătălin Alexandru, 2021. "Optimization of the Bi-Axial Tracking System for a Photovoltaic Platform," Energies, MDPI, vol. 14(3), pages 1-30, January.
    6. Salgado-Conrado, Lizbeth, 2018. "A review on sun position sensors used in solar applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2128-2146.
    7. Sebastijan Seme & Bojan Štumberger & Miralem Hadžiselimović & Klemen Sredenšek, 2020. "Solar Photovoltaic Tracking Systems for Electricity Generation: A Review," Energies, MDPI, vol. 13(16), pages 1-24, August.
    8. Sato, Daisuke & Yamagata, Yuki & Hirata, Kenji & Yamada, Noboru, 2020. "Mathematical power-generation model of a four-terminal partial concentrator photovoltaic module for optimal sun-tracking strategy," Energy, Elsevier, vol. 213(C).
    9. Hu, Hemin & Guo, Chaohong & Cai, Haofei & Jiang, Yuyan & Liang, Shiqiang & Guo, Yongxian, 2021. "Dynamic characteristics of the recuperator thermal performance in a S–CO2 Brayton cycle," Energy, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salgado-Conrado, Lizbeth, 2018. "A review on sun position sensors used in solar applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2128-2146.
    2. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    3. Hafez, A.Z. & Yousef, A.M. & Harag, N.M., 2018. "Solar tracking systems: Technologies and trackers drive types – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 754-782.
    4. Tibúrcio, B.D. & Liang, D. & Almeida, J. & Garcia, D. & Catela, M. & Costa, H. & Vistas, C.R., 2022. "Tracking error compensation capacity measurement of a dual-rod side-pumping solar laser," Renewable Energy, Elsevier, vol. 195(C), pages 1253-1261.
    5. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    6. Pirayawaraporn, Alongkorn & Sappaniran, Sahapol & Nooraksa, Sarawin & Prommai, Chanon & Chindakham, Nachaya & Jamroen, Chaowanan, 2023. "Innovative sensorless dual-axis solar tracking system using particle filter," Applied Energy, Elsevier, vol. 338(C).
    7. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    8. Badr, Farouk & Radwan, Ali & Ahmed, Mahmoud & Hamed, Ahmed M., 2022. "An experimental study of the concentrator photovoltaic/thermoelectric generator performance using different passive cooling methods," Renewable Energy, Elsevier, vol. 185(C), pages 1078-1094.
    9. Talavera, D.L. & Muñoz-Cerón, Emilio & Ferrer-Rodríguez, J.P. & Pérez-Higueras, Pedro J., 2019. "Assessment of cost-competitiveness and profitability of fixed and tracking photovoltaic systems: The case of five specific sites," Renewable Energy, Elsevier, vol. 134(C), pages 902-913.
    10. Jamroen, Chaowanan & Fongkerd, Chanon & Krongpha, Wipa & Komkum, Preecha & Pirayawaraporn, Alongkorn & Chindakham, Nachaya, 2021. "A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis," Applied Energy, Elsevier, vol. 299(C).
    11. Hammad, Bashar & Al-Sardeah, Ali & Al-Abed, Mohammad & Nijmeh, Salem & Al-Ghandoor, Ahmed, 2017. "Performance and economic comparison of fixed and tracking photovoltaic systems in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 827-839.
    12. Zihan Yang & Zhiquan Xiao, 2023. "A Review of the Sustainable Development of Solar Photovoltaic Tracking System Technology," Energies, MDPI, vol. 16(23), pages 1-31, November.
    13. Sebastijan Seme & Bojan Štumberger & Miralem Hadžiselimović & Klemen Sredenšek, 2020. "Solar Photovoltaic Tracking Systems for Electricity Generation: A Review," Energies, MDPI, vol. 13(16), pages 1-24, August.
    14. Li, Guiqiang & Pei, Gang & Ji, Jie & Su, Yuehong, 2015. "Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system," Applied Energy, Elsevier, vol. 144(C), pages 214-223.
    15. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    16. Golonis, Chrysanthos & Skiadopoulos, Anastasios & Manolakos, Dimitris & Kosmadakis, George, 2021. "Assessment of the performance of a low-temperature Organic Rankine Cycle engine coupled with a concentrating PV-Thermal system," Renewable Energy, Elsevier, vol. 179(C), pages 1085-1097.
    17. Bougiatioti, Flora & Michael, Aimilios, 2015. "The architectural integration of active solar systems. Building applications in the Eastern Mediterranean region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 966-982.
    18. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    19. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    20. Sumathi, Vijayan & Jayapragash, R. & Bakshi, Abhinav & Kumar Akella, Praveen, 2017. "Solar tracking methods to maximize PV system output – A review of the methods adopted in recent decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 130-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:689-696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.