IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v94y2016icp537-546.html
   My bibliography  Save this article

An improved formula for determination of secondary energy losses in the runner of Kaplan turbine

Author

Listed:
  • Božić, Ivan
  • Benišek, Miroslav

Abstract

Secondary losses, which occur during the energy transfer process in axial turbomachinery, have been the subject of investigation for a long time. So far, much more attention has been naturally paid to the research of the phenomenon in gas and steam turbines than in hydraulic turbines. In the paper, the profile and secondary energy losses in the Kaplan turbine runner were considered by the comprehensive numerical simulations using two turbulence models and by the available experimental data of the blade profiles' characteristics. The performed research provides a contribution to better determination of secondary losses in the engineering practice, its distributions and participations in the total turbine losses for a wide range of on-cam operating modes. According to the proposed methodology and the obtained results, the improvement of the existing formula has been done thus enabling more accurate quantifying of secondary losses in the runner of the axial hydraulic turbine.

Suggested Citation

  • Božić, Ivan & Benišek, Miroslav, 2016. "An improved formula for determination of secondary energy losses in the runner of Kaplan turbine," Renewable Energy, Elsevier, vol. 94(C), pages 537-546.
  • Handle: RePEc:eee:renene:v:94:y:2016:i:c:p:537-546
    DOI: 10.1016/j.renene.2016.03.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116302762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.03.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xin & Luo, Yongyao & Karney, Bryan W. & Wang, Weizheng, 2015. "A selected literature review of efficiency improvements in hydraulic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 18-28.
    2. Rahi, O.P. & Chandel, A.K., 2015. "Refurbishment and uprating of hydro power plants—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 726-737.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yuning & Zhang, Yuning & Qian, Zhongdong & Ji, Bin & Wu, Yulin, 2016. "A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 303-318.
    2. Božić, Ivan, 2021. "A novel energy losses dependence on integral swirl flow parameters in an elbow draft tube of a Kaplan turbine," Renewable Energy, Elsevier, vol. 175(C), pages 550-558.
    3. Masood, Zahid & Khan, Shahroz & Qian, Li, 2021. "Machine learning-based surrogate model for accelerating simulation-driven optimisation of hydropower Kaplan turbine," Renewable Energy, Elsevier, vol. 173(C), pages 827-848.
    4. Chang Xu & Dianwei Qian, 2015. "Governor Design for a Hydropower Plant with an Upstream Surge Tank by GA-Based Fuzzy Reduced-Order Sliding Mode," Energies, MDPI, vol. 8(12), pages 1-16, November.
    5. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    6. Du, Jiyun & Yang, Hongxing & Shen, Zhicheng & Chen, Jian, 2017. "Micro hydro power generation from water supply system in high rise buildings using pump as turbines," Energy, Elsevier, vol. 137(C), pages 431-440.
    7. Ibarra, G.A. & Ladino, J.A. & Larrahondo, F.J. & Rodriguez, S.A., 2024. "Optimization and reconstruction of pelton buckets based on statistical techniques, artificial neural networks and CFD modelling," Renewable Energy, Elsevier, vol. 231(C).
    8. Muhirwa, Alexis & Cai, Wei-Hua & Su, Wen-Tao & Liu, Quanzhong & Binama, Maxime & Li, Biao & Wu, Jian, 2020. "A review on remedial attempts to counteract the power generation compromise from draft tubes of hydropower plants," Renewable Energy, Elsevier, vol. 150(C), pages 743-764.
    9. Ram, Sita & Rahi, O.P. & Sharma, Veena, 2017. "A comprehensive literature review on slip power recovery drives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 922-934.
    10. Gabl, Roman & Innerhofer, Daniel & Achleitner, Stefan & Righetti, Maurizio & Aufleger, Markus, 2018. "Evaluation criteria for velocity distributions in front of bulb hydro turbines," Renewable Energy, Elsevier, vol. 121(C), pages 745-756.
    11. Loureiro, Dália & Beceiro, Paula & Moreira, Madalena & Arranja, Carina & Cordeiro, Diana & Alegre, Helena, 2023. "A comprehensive performance assessment system for diagnosis and decision-support to improve water and energy efficiency and its demonstration in Portuguese collective irrigation systems," Agricultural Water Management, Elsevier, vol. 275(C).
    12. Sonawat, Arihant & Choi, Young-Seok & Kim, Kyung Min & Kim, Jin-Hyuk, 2020. "Parametric study on the sensitivity and influence of axial and radial clearance on the performance of a positive displacement hydraulic turbine," Energy, Elsevier, vol. 201(C).
    13. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    14. Edson Bortoni & Zulcy de Souza & Augusto Viana & Helcio Villa-Nova & Ângelo Rezek & Luciano Pinto & Roberto Siniscalchi & Rafael Bragança & José Bernardes, 2019. "The Benefits of Variable Speed Operation in Hydropower Plants Driven by Francis Turbines," Energies, MDPI, vol. 12(19), pages 1-20, September.
    15. Qais A. Khasawneh & Bourhan Tashtoush & Anas Nawafleh & Bayan Kan’an, 2018. "Techno-Economic Feasibility Study of a Hypersaline Pressure-Retarded Osmosis Power Plants: Dead Sea–Red Sea Conveyor," Energies, MDPI, vol. 11(11), pages 1-17, November.
    16. Trivedi, Chirag & Agnalt, Einar & Dahlhaug, Ole Gunnar, 2017. "Investigations of unsteady pressure loading in a Francis turbine during variable-speed operation," Renewable Energy, Elsevier, vol. 113(C), pages 397-410.
    17. Iliev, Igor & Trivedi, Chirag & Dahlhaug, Ole Gunnar, 2019. "Variable-speed operation of Francis turbines: A review of the perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 109-121.
    18. Zhe Ma & Baoshan Zhu & Cong Rao & Yonghong Shangguan, 2019. "Comprehensive Hydraulic Improvement and Parametric Analysis of a Francis Turbine Runner," Energies, MDPI, vol. 12(2), pages 1-20, January.
    19. Suyesh, Bhattarai & Parag, Vichare & Keshav, Dahal & Ahmed, Al Makky & Abdul-Ghani, Olabi, 2019. "Novel trends in modelling techniques of Pelton Turbine bucket for increased renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 87-101.
    20. Zhumei Luo & Cong Nie & Shunli Lv & Tao Guo & Suoming Gao, 2022. "The Effect of J-Groove on Vortex Suppression and Energy Dissipation in a Draft Tube of Francis Turbine," Energies, MDPI, vol. 15(5), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:94:y:2016:i:c:p:537-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.