IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v92y2016icp303-311.html
   My bibliography  Save this article

SCIG wind turbine wireless controlled using morphological filtering for power quality enhancement

Author

Listed:
  • Cardoso, J.G.
  • Casella, I.R.S.
  • Filho, A.J. Sguarezi
  • Costa, F.F.
  • Capovilla, C.E.

Abstract

In a renewable energy power system inside a smart grid environment, the use of wireless technologies for remote transmitting control information to the wind turbines requires modern techniques to improve the overall generated power quality and prevent damage to the turbines and converters. In this work, a robust wireless control system for a squirrel cage induction wind turbine connected to the power grid is proposed. The system employs convolutional coding and morphological filtering jointly to enhance the generated power quality by improving the robustness of the control system to the errors caused by the radio propagation channel. The performance is investigated in terms of total harmonic distortion and overall system response to verify the power quality delivered by the wind turbine to the grid. The satisfactory results endorse the operability and advantages of the proposed wireless control system.

Suggested Citation

  • Cardoso, J.G. & Casella, I.R.S. & Filho, A.J. Sguarezi & Costa, F.F. & Capovilla, C.E., 2016. "SCIG wind turbine wireless controlled using morphological filtering for power quality enhancement," Renewable Energy, Elsevier, vol. 92(C), pages 303-311.
  • Handle: RePEc:eee:renene:v:92:y:2016:i:c:p:303-311
    DOI: 10.1016/j.renene.2016.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811630115X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebrahimi, F.M. & Khayatiyan, A. & Farjah, E., 2016. "A novel optimizing power control strategy for centralized wind farm control system," Renewable Energy, Elsevier, vol. 86(C), pages 399-408.
    2. Adabi, M. Ebrahim & Vahedi, Abolfazl, 2013. "A survey of shaft voltage reduction strategies for induction generators in wind energy applications," Renewable Energy, Elsevier, vol. 50(C), pages 177-187.
    3. de Almeida, L.A.L. & Filho, A.J. Sguarezi & Capovilla, C.E. & Casella, I.R.S. & Costa, F.F., 2016. "An impulsive noise filter applied in wireless control of wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 347-353.
    4. Merabet Boulouiha, H. & Allali, A. & Laouer, M. & Tahri, A. & Denaï, M. & Draou, A., 2015. "Direct torque control of multilevel SVPWM inverter in variable speed SCIG-based wind energy conversion system," Renewable Energy, Elsevier, vol. 80(C), pages 140-152.
    5. Jiang, Haibo & Li, Yanru & Cheng, Zhongqing, 2015. "Performances of ideal wind turbine," Renewable Energy, Elsevier, vol. 83(C), pages 658-662.
    6. Li, H. & Zhao, B. & Yang, C. & Chen, H.W. & Chen, Z., 2011. "Analysis and estimation of transient stability for a grid-connected wind turbine with induction generator," Renewable Energy, Elsevier, vol. 36(5), pages 1469-1476.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Solís-Chaves, J.S. & Rocha-Osorio, C.M. & Murari, A.L.L. & Lira, Valdemir Martins & Sguarezi Filho, Alfeu J., 2018. "Extracting potable water from humid air plus electric wind generation: A possible application for a Brazilian prototype," Renewable Energy, Elsevier, vol. 121(C), pages 102-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atallah, Ahmed M. & El Tantawy, El Sayed F., 2015. "Direct torque control of machine side multilevel converter for variable speed wind turbines," Energy, Elsevier, vol. 90(P1), pages 1091-1099.
    2. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    3. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    4. Niancheng Zhou & Fan Ye & Qianggang Wang & Xiaoxuan Lou & Yuxiang Zhang, 2016. "Short-Circuit Calculation in Distribution Networks with Distributed Induction Generators," Energies, MDPI, vol. 9(4), pages 1-21, April.
    5. Luis A. G. Gomez & Samuel C. Pereira & André L. L. F. Murari & Henrique S. Franco & Jose A. T. Altuna & Mauricio B. C. Salles & Alfeu J. S. Filho & Carlos E. Capovilla & Ivan R. S. Casella, 2019. "Analysis of a Control System for DFIG Wind Generators Based on the Transmission of Power References through a GSM Wireless Network: A Smart Grid Experimental Approach," Energies, MDPI, vol. 12(2), pages 1-12, January.
    6. Xiaodong Li & Xiang Song & Djamila Ouelhadj, 2023. "A Cost Optimisation Model for Maintenance Planning in Offshore Wind Farms with Wind Speed Dependent Failure Rates," Mathematics, MDPI, vol. 11(13), pages 1-21, June.
    7. Mingcan Li & Hanbin Xiao & Lin Pan & Chengjun Xu, 2019. "Study of Generalized Interaction Wake Models Systems with ELM Variation for Off-Shore Wind Farms," Energies, MDPI, vol. 12(5), pages 1-32, March.
    8. Liu, W.Y., 2017. "A review on wind turbine noise mechanism and de-noising techniques," Renewable Energy, Elsevier, vol. 108(C), pages 311-320.
    9. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    10. Essah, Marcellinus & Andrews, Nathan, 2016. "Linking or de-linking sustainable mining practices and corporate social responsibility? Insights from Ghana," Resources Policy, Elsevier, vol. 50(C), pages 75-85.
    11. Hu, Ruiqi & Le, Conghuan & Gao, Zhen & Ding, Hongyan & Zhang, Puyang, 2021. "Implementation and evaluation of control strategies based on an open controller for a 10 MW floating wind turbine," Renewable Energy, Elsevier, vol. 179(C), pages 1751-1766.
    12. Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz, 2021. "Fluid structure interaction analysis of the operating Savonius wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 272-284.
    13. Alkhabbaz, Ali & Yang, Ho-Seong & Weerakoon, A.H Samitha & Lee, Young-Ho, 2021. "A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1398-1420.
    14. Carlo Bianca, 2022. "On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives," Energies, MDPI, vol. 15(21), pages 1-22, October.
    15. Amr. S. Zalhaf & Mazen Abdel-Salam & Mahmoud Ahmed, 2019. "An Active Common-Mode Voltage Canceler for PWM Converters in Wind-Turbine Doubly-Fed Induction Generators," Energies, MDPI, vol. 12(4), pages 1-12, February.
    16. José Genaro González-Hernández & Rubén Salas-Cabrera, 2022. "Duty Cycle-Rotor Angular Speed Reverse Acting Relationship Steady State Analysis Based on a PMSG d–q Transform Modeling," Mathematics, MDPI, vol. 10(5), pages 1-17, February.
    17. Bizon, Nicu, 2018. "Optimal operation of fuel cell/wind turbine hybrid power system under turbulent wind and variable load," Applied Energy, Elsevier, vol. 212(C), pages 196-209.
    18. Kosuke Takahashi & Nyam Jargalsaikhan & Shriram Rangarajan & Ashraf Mohamed Hemeida & Hiroshi Takahashi & Tomonobu Senjyu, 2020. "Output Control of Three-Axis PMSG Wind Turbine Considering Torsional Vibration Using H Infinity Control," Energies, MDPI, vol. 13(13), pages 1-13, July.
    19. Muche, Thomas & Pohl, Ralf & Höge, Christin, 2016. "Economically optimal configuration of onshore horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 90(C), pages 469-480.
    20. Minan Tang & Wenjuan Wang & Jiandong Qiu & Detao Li & Linyuan Lei, 2022. "Active Power Cooperative Control for Wind Power Clusters with Multiple Temporal and Spatial Scales," Energies, MDPI, vol. 15(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:92:y:2016:i:c:p:303-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.