IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v91y2016icp417-424.html
   My bibliography  Save this article

Evaluation of briquettes made from textile industry solid waste

Author

Listed:
  • Avelar, Nayara Vilela
  • Rezende, Ana Augusta Passos
  • Carneiro, Angélica de Cássia Oliveira
  • Silva, Cláudio Mudadu

Abstract

The biosludge was mixed with cotton textile industry residues in ratios of 0, 25, 50, 75 and 100% and briquettes were manufactured in a lab-scale machine at three compaction pressures 6205, 8274 and 10342 kPa. The heating value, chemical characteristic, density, resistance to compression and hygroscopic moisture equilibrium were analyzed. The compaction pressure of 6205 kPa proved ideal for the briquetting process in the laboratory scale because in this pressure the briquettes had the higher percentages of fixed carbon, high heating value and compressive strength, and the lowest ash content. Pressure had no effect on density and hygroscopic equilibrium moisture content of the briquettes. The best mixing proportion between the two residues was 25% of sludge because, with this percentage, it is possible to obtain briquettes with high contents of volatile matter, fixed carbon, higher heating value, density and compressive strength, and lower ash content and hygroscopic equilibrium moisture. It was possible to conclude that the mixing of residues for the production of briquettes can optimize their physical-chemical and mechanical characteristics depending on the mixing ratio used.

Suggested Citation

  • Avelar, Nayara Vilela & Rezende, Ana Augusta Passos & Carneiro, Angélica de Cássia Oliveira & Silva, Cláudio Mudadu, 2016. "Evaluation of briquettes made from textile industry solid waste," Renewable Energy, Elsevier, vol. 91(C), pages 417-424.
  • Handle: RePEc:eee:renene:v:91:y:2016:i:c:p:417-424
    DOI: 10.1016/j.renene.2016.01.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116300751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.01.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erol, M. & Haykiri-Acma, H. & Küçükbayrak, S., 2010. "Calorific value estimation of biomass from their proximate analyses data," Renewable Energy, Elsevier, vol. 35(1), pages 170-173.
    2. Stolarski, Mariusz J. & Szczukowski, Stefan & Tworkowski, Józef & Krzyżaniak, Michał & Gulczyński, Paweł & Mleczek, Mirosław, 2013. "Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass," Renewable Energy, Elsevier, vol. 57(C), pages 20-26.
    3. Yanfen, Liao & Xiaoqian, Ma, 2010. "Thermogravimetric analysis of the co-combustion of coal and paper mill sludge," Applied Energy, Elsevier, vol. 87(11), pages 3526-3532, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarína Čulková & Marcela Taušová & Peter Tauš & Eva Mihaliková, 2023. "Development of Energy Recovery from Waste in Slovakia Compared with the Worldwide Trend," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    2. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    3. Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
    4. Maria Angeles Garrido & Juan A. Conesa & Maria Dolores Garcia, 2017. "Characterization and Production of Fuel Briquettes Made from Biomass and Plastic Wastes," Energies, MDPI, vol. 10(7), pages 1-12, June.
    5. Xie, Candie & Liu, Jingyong & Xie, Wuming & Kuo, Jiahong & Lu, Xingwen & Zhang, Xiaochun & He, Yao & Sun, Jian & Chang, Kenlin & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fa, 2018. "Quantifying thermal decomposition regimes of textile dyeing sludge, pomelo peel, and their blends," Renewable Energy, Elsevier, vol. 122(C), pages 55-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhiwei & Lei, Tingzhou & Chang, Xia & Shi, Xinguang & Xiao, Ju & Li, Zaifeng & He, Xiaofeng & Zhu, Jinling & Yang, Shuhua, 2015. "Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: A study using cornstalks in China," Applied Energy, Elsevier, vol. 157(C), pages 523-532.
    2. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    3. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    4. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    5. Jianbiao Liu & Xuya Jiang & Yanhao Yuan & Huanhuan Chen & Wenbin Zhang & Hongzhen Cai & Feng Gao, 2022. "Densification of Yak Manure Biofuel Pellets and Evaluation of Parameters: Effects on Properties," Energies, MDPI, vol. 15(5), pages 1-14, February.
    6. Nahar, Gaurav & Rajput, Shailendrasingh & Grasham, Oliver & Dalvi, Vishwanath Haily & Dupont, Valerie & Ross, Andrew B. & Pandit, Aniruddha B., 2022. "Technoeconomic analysis of biogas production using simple and effective mechanistic model calibrated with biomethanation potential experiments of water lettuce (pistia stratiotes) inoculated by buffal," Energy, Elsevier, vol. 244(PB).
    7. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    8. Aries Roda D. Romallosa & Eckhard Kraft, 2017. "Feasibility of Biomass Briquette Production from Municipal Waste Streams by Integrating the Informal Sector in the Philippines," Resources, MDPI, vol. 6(1), pages 1-19, February.
    9. Anna Brunerová & Hynek Roubík & Milan Brožek, 2018. "Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel," Energies, MDPI, vol. 11(9), pages 1-20, August.
    10. Saidur, R. & Atabani, A.E. & Mekhilef, S., 2011. "A review on electrical and thermal energy for industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2073-2086, May.
    11. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    12. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    13. Jankowski, Krzysztof Józef & Budzyński, Wojciech Stefan & Kijewski, Łukasz, 2015. "An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland," Energy, Elsevier, vol. 81(C), pages 674-681.
    14. Živilė Černiauskienė & Algirdas Jonas Raila & Egidijus Zvicevičius & Vita Tilvikienė & Zofija Jankauskienė, 2021. "Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops," Energies, MDPI, vol. 14(19), pages 1-15, October.
    15. Lou, Rui & Wu, Shubin & Lv, Gaojin & Yang, Qing, 2012. "Energy and resource utilization of deinking sludge pyrolysis," Applied Energy, Elsevier, vol. 90(1), pages 46-50.
    16. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Nikola Bilandžija & Tajana Krička & Ana Matin & Josip Leto & Mateja Grubor, 2018. "Effect of Harvest Season on the Fuel Properties of Sida hermaphrodita (L.) Rusby Biomass as Solid Biofuel," Energies, MDPI, vol. 11(12), pages 1-13, December.
    18. Ido, Alexander L. & de Luna, Mark Daniel G. & Capareda, Sergio C. & Maglinao, Amado L. & Nam, Hyungseok, 2018. "Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction," Energy, Elsevier, vol. 157(C), pages 949-956.
    19. Rudolf Petráš & Julian Mecko & Ján Kukla & Margita Kuklová & Danica Krupová & Michal Pástor & Marcel Raček & Ivica Pivková, 2021. "Energy Stored in Above-Ground Biomass Fractions and Model Trees of the Main Coniferous Woody Plants," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    20. Fang, Shiwen & Lin, Yousheng & Lin, Yan & Chen, Shu & Shen, Xiangyang & Zhong, Tianming & Ding, Lixing & Ma, Xiaoqian, 2020. "Influence of ultrasonic pretreatment on the co-pyrolysis characteristics and kinetic parameters of municipal solid waste and paper mill sludge," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:91:y:2016:i:c:p:417-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.