IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v89y2016icp144-153.html
   My bibliography  Save this article

Competitiveness assessment of the biomass power generation industry in China: A five forces model study

Author

Listed:
  • Zhao, Zhen-Yu
  • Zuo, Jian
  • Wu, Pan-Hao
  • Yan, Hong
  • Zillante, George

Abstract

China is facing a number of energy related challenges including a shortage of electricity supply, depletion of fossil fuels and environmental pollution. These challenges make it important to develop renewable energy resources. As per other renewable energy industries, the biomass power industry is facing a series of opportunities and challenges. Utilizing Michael Porter's Five Forces Model theory for analyzing the competitive environment and the competitive situation of an industry, this paper establishes a Five Forces Model for assessing the competitiveness of China's biomass power industry. Inputs for this model include semi-structured interviews with biomass power generation enterprises and a critical analysis of the national policy framework along with relevant literature and official statistics. Five major stakeholders of China's biomass power industry, namely competitors, suppliers, buyers, potential competitors, and substitutes are assessed to determine their influence on the biomass power generation industry. This assessment highlighted the current status, existing issues and future prospects of the biomass power industry. Similarly, it provides assistance to develop procurement strategies for the sustainable development of the industry.

Suggested Citation

  • Zhao, Zhen-Yu & Zuo, Jian & Wu, Pan-Hao & Yan, Hong & Zillante, George, 2016. "Competitiveness assessment of the biomass power generation industry in China: A five forces model study," Renewable Energy, Elsevier, vol. 89(C), pages 144-153.
  • Handle: RePEc:eee:renene:v:89:y:2016:i:c:p:144-153
    DOI: 10.1016/j.renene.2015.12.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115305395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.12.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    2. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    3. Zhang, Qin & Zhou, Dequn & Fang, Xiaomeng, 2014. "Analysis on the policies of biomass power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 926-935.
    4. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2010. "Sustainability considerations for electricity generation from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1419-1427, June.
    5. Zhao, Zhen-Yu & Zuo, Jian & Fan, Lei-Lei & Zillante, George, 2011. "Impacts of renewable energy regulations on the structure of power generation in China – A critical analysis," Renewable Energy, Elsevier, vol. 36(1), pages 24-30.
    6. Yuan, Xue-liang & Zuo, Jian, 2011. "Pricing and affordability of renewable energy in China – A case study of Shandong Province," Renewable Energy, Elsevier, vol. 36(3), pages 1111-1117.
    7. Bilgili, Faik, 2012. "The impact of biomass consumption on CO2 emissions: Cointegration analyses with regime shifts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5349-5354.
    8. Zhao, Zhen Yu & Zuo, Jian & Feng, Tian Tian & Zillante, George, 2011. "International cooperation on renewable energy development in China – A critical analysis," Renewable Energy, Elsevier, vol. 36(3), pages 1105-1110.
    9. Liu, Jicheng & Wang, Sijia & Wei, Qiushuang & Yan, Suli, 2014. "Present situation, problems and solutions of China׳s biomass power generation industry," Energy Policy, Elsevier, vol. 70(C), pages 144-151.
    10. Zhao, Zhen-yu & Yan, Hong, 2012. "Assessment of the biomass power generation industry in China," Renewable Energy, Elsevier, vol. 37(1), pages 53-60.
    11. Thornley, Patricia, 2006. "Increasing biomass based power generation in the UK," Energy Policy, Elsevier, vol. 34(15), pages 2087-2099, October.
    12. Carneiro, Patrícia & Ferreira, Paula, 2012. "The economic, environmental and strategic value of biomass," Renewable Energy, Elsevier, vol. 44(C), pages 17-22.
    13. Yang, Jun & Wang, Xiaobing & Ma, Hengyun & Bai, Junfei & Jiang, Ye & Yu, Hai, 2014. "Potential usage, vertical value chain and challenge of biomass resource: Evidence from China’s crop residues," Applied Energy, Elsevier, vol. 114(C), pages 717-723.
    14. Zhao, Zhen Yu & Hu, Ji & Zuo, Jian, 2009. "Performance of wind power industry development in China: A DiamondModel study," Renewable Energy, Elsevier, vol. 34(12), pages 2883-2891.
    15. Kumar, Ashwani & Kumar, Kapil & Kaushik, Naresh & Sharma, Satyawati & Mishra, Saroj, 2010. "Renewable energy in India: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2434-2442, October.
    16. Yao, Chunsheng & Chen, Chongying & Li, Ming, 2012. "Analysis of rural residential energy consumption and corresponding carbon emissions in China," Energy Policy, Elsevier, vol. 41(C), pages 445-450.
    17. Gokcol, Cihan & Dursun, Bahtiyar & Alboyaci, Bora & Sunan, Erkan, 2009. "Importance of biomass energy as alternative to other sources in Turkey," Energy Policy, Elsevier, vol. 37(2), pages 424-431, February.
    18. Qiu, Huanguang & Huang, Jikun & Yang, Jun & Rozelle, Scott & Zhang, Yuhua & Zhang, Yahui & Zhang, Yanli, 2010. "Bioethanol development in China and the potential impacts on its agricultural economy," Applied Energy, Elsevier, vol. 87(1), pages 76-83, January.
    19. Gan, Lin & Yu, Juan, 2008. "Bioenergy transition in rural China: Policy options and co-benefits," Energy Policy, Elsevier, vol. 36(2), pages 531-540, February.
    20. Hansson, Julia & Berndes, Gran & Johnsson, Filip & Kjrstad, Jan, 2009. "Co-firing biomass with coal for electricity generation--An assessment of the potential in EU27," Energy Policy, Elsevier, vol. 37(4), pages 1444-1455, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Junqi & Cao, Hongjun, 2022. "Improving competitive strategic decisions of Chinese coal companies toward green transformation: A hybrid multi-criteria decision-making model," Resources Policy, Elsevier, vol. 75(C).
    2. Hafezi, Reza & Wood, David A. & Akhavan, Amir Naser & Pakseresht, Saeed, 2020. "Iran in the emerging global natural gas market: A scenario-based competitive analysis and policy assessment," Resources Policy, Elsevier, vol. 68(C).
    3. Asefeh Asemi & Adeleh Asemi & Andrea Ko, 2022. "The Competitive Situation of the Cheminformatics Industry Based on Porter’s Model in Iran," SAGE Open, , vol. 12(4), pages 21582440221, November.
    4. Zhanwu Wang & Guangyin Xu & Zhenfeng Wang & Zhiping Zhang, 2022. "Sustainability of agricultural waste power generation industry in China: criteria relationship identification and policy design mechanism," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3371-3395, March.
    5. Jun Dong & Dongran Liu & Dongxue Wang & Qi Zhang, 2019. "Identification of Key Influencing Factors of Sustainable Development for Traditional Power Generation Groups in a Market by Applying an Extended MCDM Model," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    6. Kevin Baird & Nuraddeen Nuhu & Lu Jiao, 2024. "The effect of Porter’s competitive forces on competitive advantage and organisational performance and the moderating role of management accounting practices," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 35(2), pages 303-332, June.
    7. Yu-zhuo, Zhang & Xin-gang, Zhao & Ling-zhi, Ren & Ji, Liang & Ping-kuo, Liu, 2017. "The development of China's biomass power industry under feed-in tariff and renewable portfolio standard: A system dynamics analysis," Energy, Elsevier, vol. 139(C), pages 947-961.
    8. Qingyou Yan & Youwei Wan & Jingye Yuan & Jieting Yin & Tomas Baležentis & Dalia Streimikiene, 2017. "Economic and Technical Efficiency of the Biomass Industry in China: A Network Data Envelopment Analysis Model Involving Externalities," Energies, MDPI, vol. 10(9), pages 1-19, September.
    9. Mingming Zhang & Dequn Zhou & Hao Ding & Jingliang Jin, 2016. "Biomass Power Generation Investment in China: A Real Options Evaluation," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    10. Cao, Dongqin & Peng, Can & Yang, Guanglei, 2022. "The pressure of political promotion and renewable energy technological innovation: A spatial econometric analysis from China," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    11. Chen, Huadong & Wang, Can & Cai, Wenjia & Wang, Jianhui, 2018. "Simulating the impact of investment preference on low-carbon transition in power sector," Applied Energy, Elsevier, vol. 217(C), pages 440-455.
    12. Zeng, Bing & Fahad, Shah & Bai, Dongbei & Zhang, Jisheng & Işık, Cem, 2023. "Assessing the sustainability of natural resources using the five forces and value chain combined models: The influence of solar energy development," Resources Policy, Elsevier, vol. 86(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    2. KS Rajmohan & C Ramya & Sunita Varjani, 2021. "Trends and advances in bioenergy production and sustainable solid waste management," Energy & Environment, , vol. 32(6), pages 1059-1085, September.
    3. Juanjuan Wu & Jian Zhang & Weiming Yi & Hongzhen Cai & Yang Li & Zhanpeng Su, 2021. "A Game-Theoretic Analysis of Incentive Effects for Agribiomass Power Generation Supply Chain in China," Energies, MDPI, vol. 14(3), pages 1-18, January.
    4. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    5. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    6. Wen, Wen & Zhang, Qin, 2015. "A design of straw acquisition mode for China's straw power plant based on supply chain coordination," Renewable Energy, Elsevier, vol. 76(C), pages 369-374.
    7. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    8. Kaiyan Luo & Xingping Zhang & Qinliang Tan, 2016. "Novel Role of Rural Official Organization in the Biomass-Based Power Supply Chain in China: A Combined Game Theory and Agent-Based Simulation Approach," Sustainability, MDPI, vol. 8(8), pages 1-23, August.
    9. Zhao, Zhen-yu & Yan, Hong & Zuo, Jian & Tian, Yu-xi & Zillante, George, 2013. "A critical review of factors affecting the wind power generation industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 499-508.
    10. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
    11. Yang, Mian & Patiño-Echeverri, Dalia & Yang, Fuxia, 2012. "Wind power generation in China: Understanding the mismatch between capacity and generation," Renewable Energy, Elsevier, vol. 41(C), pages 145-151.
    12. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    13. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    14. Zhao, Zhen-yu & Zhang, Shuang-ying & Zuo, Jian, 2011. "A critical analysis of the photovoltaic power industry in China – From diamond model to gear model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4963-4971.
    15. Ming, Zeng & Honglin, Li & Mingjuan, Ma & Na, Li & Song, Xue & Liang, Wang & Lilin, Peng, 2013. "Review on transaction status and relevant policies of southern route in China's West–East Power Transmission," Renewable Energy, Elsevier, vol. 60(C), pages 454-461.
    16. Narwane, Vaibhav S. & Yadav, Vinay Surendra & Raut, Rakesh D. & Narkhede, Balkrishna E. & Gardas, Bhaskar B., 2021. "Sustainable development challenges of the biofuel industry in India based on integrated MCDM approach," Renewable Energy, Elsevier, vol. 164(C), pages 298-309.
    17. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    18. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    19. Zhao, Zhen-yu & Tian, Yu-xi & Zillante, George, 2014. "Modeling and evaluation of the wind power industry chain: A China study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 397-406.
    20. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:89:y:2016:i:c:p:144-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.