IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v88y2016icp418-429.html
   My bibliography  Save this article

Measurement and analysis of thermal properties of rocks for the compilation of geothermal maps of Cyprus

Author

Listed:
  • Iosif Stylianou, Iosifina
  • Tassou, Savvas
  • Christodoulides, Paul
  • Panayides, Ioannis
  • Florides, Georgios

Abstract

Previous studies in Cyprus classified the island in the category of low enthalpy with high potentials in the usage of geothermal energy for space air-conditioning. Due to the little existing information about the underground thermal properties, an extended geological sampling has been carried out on the island. Measurements of thermal properties have been performed in the laboratory at room temperature for all the collected samples both in their dry and water-saturated state. The impact on thermal conductivity of water in samples, the mineralogical composition, and the geological age of samples have been the objectives of the current study.

Suggested Citation

  • Iosif Stylianou, Iosifina & Tassou, Savvas & Christodoulides, Paul & Panayides, Ioannis & Florides, Georgios, 2016. "Measurement and analysis of thermal properties of rocks for the compilation of geothermal maps of Cyprus," Renewable Energy, Elsevier, vol. 88(C), pages 418-429.
  • Handle: RePEc:eee:renene:v:88:y:2016:i:c:p:418-429
    DOI: 10.1016/j.renene.2015.10.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115304110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.10.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A. & Florides, Georgios A. & Pouloupatis, Panayiotis D. & Panayides, Ioannis & Joseph-Stylianou, Josephina & Zomeni, Zomenia, 2012. "Artificial neural networks for the generation of geothermal maps of ground temperature at various depths by considering land configuration," Energy, Elsevier, vol. 48(1), pages 233-240.
    2. John W. Lund, 2010. "Direct Utilization of Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stylianou, Iosifina Iosif & Florides, Georgios & Tassou, Savvas & Tsiolakis, Efthymios & Christodoulides, Paul, 2017. "Methodology for estimating the ground heat absorption rate of Ground Heat Exchangers," Energy, Elsevier, vol. 127(C), pages 258-270.
    2. Luo, Jin & Qiao, Yu & Xiang, Wei & Rohn, Joachim, 2020. "Measurements and analysis of the thermal properties of a sedimentary succession in Yangtze plate in China," Renewable Energy, Elsevier, vol. 147(P2), pages 2708-2723.
    3. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    4. Soldo, Vladimir & Boban, Luka & Borović, Staša, 2016. "Vertical distribution of shallow ground thermal properties in different geological settings in Croatia," Renewable Energy, Elsevier, vol. 99(C), pages 1202-1212.
    5. Aresti, Lazaros & Christodoulides, Paul & Florides, Georgios A., 2021. "An investigation on the environmental impact of various Ground Heat Exchangers configurations," Renewable Energy, Elsevier, vol. 171(C), pages 592-605.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandarasekharam, D. & Aref, Lashin & Nassir, Al Arifi, 2014. "CO2 mitigation strategy through geothermal energy, Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 154-163.
    2. Tomaszewska Barbara, 2012. "Geothermal Water Resources Management – Economic Aspects Of Their Treatment / Gospodarka Zasobami Wód Termalnych - Ekonomiczne Aspekty Ich Uzdatniania," Gospodarka Surowcami Mineralnymi / Mineral Resources Management, Sciendo, vol. 28(4), pages 59-70, December.
    3. Mahesh, A. & Shoba Jasmin, K.S., 2013. "Role of renewable energy investment in India: An alternative to CO2 mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 414-424.
    4. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    5. Sanchez-Alfaro, Pablo & Sielfeld, Gerd & Campen, Bart Van & Dobson, Patrick & Fuentes, Víctor & Reed, Andy & Palma-Behnke, Rodrigo & Morata, Diego, 2015. "Geothermal barriers, policies and economics in Chile – Lessons for the Andes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1390-1401.
    6. George Antoneas & Irene Koronaki, 2024. "Geothermal Solutions for Urban Energy Challenges: A Focus on CO 2 Plume Geothermal Systems," Energies, MDPI, vol. 17(2), pages 1-27, January.
    7. Mrityunjay Singh & Saeed Mahmoodpour & Cornelia Schmidt-Hattenberger & Ingo Sass & Michael Drews, 2023. "Influence of Reservoir Heterogeneity on Simultaneous Geothermal Energy Extraction and CO 2 Storage," Sustainability, MDPI, vol. 16(1), pages 1-23, December.
    8. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    9. Kharseh, Mohamad & Altorkmany, Lobna & Al-Khawaja, Mohammed & Hassani, Ferri, 2015. "Analysis of the effect of global climate change on ground source heat pump systems in different climate categories," Renewable Energy, Elsevier, vol. 78(C), pages 219-225.
    10. Tsubaki, Koutaro & Mitsutake, Yuichi, 2016. "Performance of ground-source heat exchangers using short residential foundation piles," Energy, Elsevier, vol. 104(C), pages 229-236.
    11. Bleicher, Alena & Gross, Matthias, 2016. "Geothermal heat pumps and the vagaries of subterranean geology: Energy independence at a household level as a real world experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 279-288.
    12. Abbas, Tauqeer & Ahmed Bazmi, Aqeel & Waheed Bhutto, Abdul & Zahedi, Gholamreza, 2014. "Greener energy: Issues and challenges for Pakistan-geothermal energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 258-269.
    13. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    14. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    15. Wei-Tao Wu & Nadine Aubry & James F. Antaki & Mark L. McKoy & Mehrdad Massoudi, 2017. "Heat Transfer in a Drilling Fluid with Geothermal Applications," Energies, MDPI, vol. 10(9), pages 1-18, September.
    16. Yang, Weifei & Xiao, Changlai & Zhang, Zhihao & Liang, Xiujuan, 2022. "Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network," Renewable Energy, Elsevier, vol. 182(C), pages 32-42.
    17. García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
    18. Korkmaz, E.D. & Serpen, U. & Satman, A., 2014. "Geothermal boom in Turkey: Growth in identified capacities and potentials," Renewable Energy, Elsevier, vol. 68(C), pages 314-325.
    19. Kharseh, Mohamad & Altorkmany, Lobna, 2012. "How global warming and building envelope will change buildings energy use in central Europe," Applied Energy, Elsevier, vol. 97(C), pages 999-1004.
    20. Xydis, George A. & Nanaki, Evanthia A. & Koroneos, Christopher J., 2013. "Low-enthalpy geothermal resources for electricity production: A demand-side management study for intelligent communities," Energy Policy, Elsevier, vol. 62(C), pages 118-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:88:y:2016:i:c:p:418-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.