IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp959-964.html
   My bibliography  Save this article

A study on the minimum duration of training data to provide a high accuracy forecast for PV generation between two different climatic zones

Author

Listed:
  • Do, Minh-Thang
  • Soubdhan, Ted
  • Benoît Robyns,

Abstract

This study focus on the minimum duration of training data required for PV generation forecast. In order to investigate this issue, the study is implemented on 2 PV installations: the first one in Guadeloupe represented for tropical climate, the second in Lille represented for temperate climate; using 3 different forecast models: the Scaled Persistence Model, the Artificial Neural Network and the Multivariate Polynomial Model. The usual statistical forecasting error indicators: NMBE, NMAE and NRMSE are computed in order to compare the accuracy of forecasts.

Suggested Citation

  • Do, Minh-Thang & Soubdhan, Ted & Benoît Robyns,, 2016. "A study on the minimum duration of training data to provide a high accuracy forecast for PV generation between two different climatic zones," Renewable Energy, Elsevier, vol. 85(C), pages 959-964.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:959-964
    DOI: 10.1016/j.renene.2015.07.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811530152X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.07.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paulescu, Marius & Badescu, Viorel & Dughir, Ciprian, 2014. "New procedure and field-tests to assess photovoltaic module performance," Energy, Elsevier, vol. 70(C), pages 49-57.
    2. Fernandez-Jimenez, L. Alfredo & Muñoz-Jimenez, Andrés & Falces, Alberto & Mendoza-Villena, Montserrat & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro M. & Zorzano-Alba, Enrique & Zorzano-Santamaria,, 2012. "Short-term power forecasting system for photovoltaic plants," Renewable Energy, Elsevier, vol. 44(C), pages 311-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Ferlito, S. & Adinolfi, G. & Graditi, G., 2017. "Comparative analysis of data-driven methods online and offline trained to the forecasting of grid-connected photovoltaic plant production," Applied Energy, Elsevier, vol. 205(C), pages 116-129.
    3. Hassan, Muhammed A. & Bailek, Nadjem & Bouchouicha, Kada & Nwokolo, Samuel Chukwujindu, 2021. "Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks," Renewable Energy, Elsevier, vol. 171(C), pages 191-209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    2. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    3. Sharadga, Hussein & Hajimirza, Shima & Balog, Robert S., 2020. "Time series forecasting of solar power generation for large-scale photovoltaic plants," Renewable Energy, Elsevier, vol. 150(C), pages 797-807.
    4. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    5. Su, Shanhe & Chen, Xiaohang & Liao, Tianjun & Chen, Jincan & Shih, Tien-Mo, 2016. "Photon-enhanced electron tunneling solar cells," Energy, Elsevier, vol. 111(C), pages 52-56.
    6. Mehrbakhsh Nilashi & Fausto Cavallaro & Abbas Mardani & Edmundas Kazimieras Zavadskas & Sarminah Samad & Othman Ibrahim, 2018. "Measuring Country Sustainability Performance Using Ensembles of Neuro-Fuzzy Technique," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    7. Alami, Abdul Hai, 2016. "Synthetic clay as an alternative backing material for passive temperature control of photovoltaic cells," Energy, Elsevier, vol. 108(C), pages 195-200.
    8. Wang, Meng & Peng, Jinqing & Luo, Yimo & Shen, Zhicheng & Yang, Hongxing, 2021. "Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements," Energy, Elsevier, vol. 224(C).
    9. Li, Yanting & Su, Yan & Shu, Lianjie, 2014. "An ARMAX model for forecasting the power output of a grid connected photovoltaic system," Renewable Energy, Elsevier, vol. 66(C), pages 78-89.
    10. Wang, Lin & Hu, Huanling & Ai, Xue-Yi & Liu, Hua, 2018. "Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm," Energy, Elsevier, vol. 153(C), pages 801-815.
    11. Polo, J. & Fernandez-Neira, W.G. & Alonso-García, M.C., 2017. "On the use of reference modules as irradiance sensor for monitoring and modelling rooftop PV systems," Renewable Energy, Elsevier, vol. 106(C), pages 186-191.
    12. Park, Nochang & Kim, Ju-Hee & Kim, Hyun-A. & Moon, Jin-Chel, 2017. "Development of an algebraic model that predicts the maximum power output of solar modules including their degradation," Renewable Energy, Elsevier, vol. 113(C), pages 141-147.
    13. Antonello Rosato & Rosa Altilio & Rodolfo Araneo & Massimo Panella, 2017. "Prediction in Photovoltaic Power by Neural Networks," Energies, MDPI, vol. 10(7), pages 1-25, July.
    14. Yadav, Amit Kumar & Sharma, Vikrant & Malik, Hasmat & Chandel, S.S., 2018. "Daily array yield prediction of grid-interactive photovoltaic plant using relief attribute evaluator based Radial Basis Function Neural Network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2115-2127.
    15. Paulescu, Marius & Brabec, Marek & Boata, Remus & Badescu, Viorel, 2017. "Structured, physically inspired (gray box) models versus black box modeling for forecasting the output power of photovoltaic plants," Energy, Elsevier, vol. 121(C), pages 792-802.
    16. Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei & Xu, Zhao & McCulloch, Malcolm D. & Wong, Kit Po, 2017. "A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 439-451.
    17. Chao-Rong Chen & Faouzi Brice Ouedraogo & Yu-Ming Chang & Devita Ayu Larasati & Shih-Wei Tan, 2021. "Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
    18. Karabacak, Kerim & Cetin, Numan, 2014. "Artificial neural networks for controlling wind–PV power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 804-827.
    19. Andreea Sabadus & Marius Paulescu, 2021. "On the Nature of the One-Diode Solar Cell Model Parameters," Energies, MDPI, vol. 14(13), pages 1-10, July.
    20. Limouni, Tariq & Yaagoubi, Reda & Bouziane, Khalid & Guissi, Khalid & Baali, El Houssain, 2023. "Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model," Renewable Energy, Elsevier, vol. 205(C), pages 1010-1024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:959-964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.