IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v121y2017icp792-802.html
   My bibliography  Save this article

Structured, physically inspired (gray box) models versus black box modeling for forecasting the output power of photovoltaic plants

Author

Listed:
  • Paulescu, Marius
  • Brabec, Marek
  • Boata, Remus
  • Badescu, Viorel

Abstract

Two advanced models for forecasting the output power of photovoltaic plants are discussed in details: a black-box Takagi-Sugeno fuzzy model and a physically inspired, semiparametric statistical model (Generalized Additive Model, GAM) based on smoothing splines. The structure of the two models, their strengths and weaknesses, are presented. The models performance is thoroughly compared with the performance of a simple linear model tested under the frame of the European Cooperation in Science and Technology (COST) Action “Weather Intelligence for Renewable Energies”, as a benchmark used also in the forecasting exercise reported in Sperati et al. Energies 8 (2015) 9594. The models are used to forecasting the output power at time horizons of 1–72 h ahead. The data used during the COST competition are used here as input. The present study extends beyond the traditional evaluation of overall model accuracy. Detailed influences of seasonal effects, sun elevation angle and solar irradiance level upon the models performance are assessed. While the accuracy of the simple linear model is not entirely bad, it differs in important details from the two advanced forecasting models. The results show that a moderate, carefully chosen increase in model structure complexity can improve the predictive performance. Suitable penalty on model complexity can help both to enforce parsimony and improve practical forecasting abilities, to a certain extent. The physically inspired GAM comes out as the best performing model.

Suggested Citation

  • Paulescu, Marius & Brabec, Marek & Boata, Remus & Badescu, Viorel, 2017. "Structured, physically inspired (gray box) models versus black box modeling for forecasting the output power of photovoltaic plants," Energy, Elsevier, vol. 121(C), pages 792-802.
  • Handle: RePEc:eee:energy:v:121:y:2017:i:c:p:792-802
    DOI: 10.1016/j.energy.2017.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217300154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paulescu, Marius & Badescu, Viorel & Dughir, Ciprian, 2014. "New procedure and field-tests to assess photovoltaic module performance," Energy, Elsevier, vol. 70(C), pages 49-57.
    2. S. N. Wood, 2000. "Modelling and smoothing parameter estimation with multiple quadratic penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 413-428.
    3. Simone Sperati & Stefano Alessandrini & Pierre Pinson & George Kariniotakis, 2015. "The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation," Energies, MDPI, vol. 8(9), pages 1-26, September.
    4. Buttler, Alexander & Dinkel, Felix & Franz, Simon & Spliethoff, Hartmut, 2016. "Variability of wind and solar power – An assessment of the current situation in the European Union based on the year 2014," Energy, Elsevier, vol. 106(C), pages 147-161.
    5. Wu, Jing & Botterud, Audun & Mills, Andrew & Zhou, Zhi & Hodge, Bri-Mathias & Heaney, Mike, 2015. "Integrating solar PV (photovoltaics) in utility system operations: Analytical framework and Arizona case study," Energy, Elsevier, vol. 85(C), pages 1-9.
    6. M. Brabec & O. Kon�r & M. Malý & I. Kasanický & E. Pelik�n, 2015. "Statistical models for disaggregation and reaggregation of natural gas consumption data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 921-937, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Opoku, Richard & Obeng, George Y. & Adjei, Eunice A. & Davis, Francis & Akuffo, Fred O., 2020. "Integrated system efficiency in reducing redundancy and promoting residential renewable energy in countries without net-metering: A case study of a SHS in Ghana," Renewable Energy, Elsevier, vol. 155(C), pages 65-78.
    2. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Haiyun Wang & Qian Chen & Linyu Zhang & Xiyu Yin & Han Cui & Zhijian Zhang & Huayue Wei & Xiaoyue Chen, 2024. "A Generalized Load Model Considering the Fault Ride-Through Capability of Distributed PV Generation System," Energies, MDPI, vol. 17(14), pages 1-15, July.
    4. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    5. Youssef Elomari & Masoud Norouzi & Marc Marín-Genescà & Alberto Fernández & Dieter Boer, 2022. "Integration of Solar Photovoltaic Systems into Power Networks: A Scientific Evolution Analysis," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    6. Zhenyu Wang & Cuixia Tian & Qibing Zhu & Min Huang, 2018. "Hourly Solar Radiation Forecasting Using a Volterra-Least Squares Support Vector Machine Model Combined with Signal Decomposition," Energies, MDPI, vol. 11(1), pages 1-21, January.
    7. Kuen-Suan Chen & Kuo-Ping Lin & Jun-Xiang Yan & Wan-Lin Hsieh, 2019. "Renewable Power Output Forecasting Using Least-Squares Support Vector Regression and Google Data," Sustainability, MDPI, vol. 11(11), pages 1-13, May.
    8. Gao, Mingming & Li, Jianjing & Hong, Feng & Long, Dongteng, 2019. "Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM," Energy, Elsevier, vol. 187(C).
    9. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    10. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    11. Andrzej Wędzik & Tomasz Siewierski & Michał Szypowski, 2019. "The Use of Black-Box Optimization Method for Determination of the Bus Connection Capacity in Electric Power Grid," Energies, MDPI, vol. 13(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    2. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    3. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    4. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    5. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    6. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    7. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    8. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    9. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    10. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    11. Xue, Yuan & Yin, Xiangrong & Jiang, Xiaolin, 2016. "Ensemble sufficient dimension folding methods for analyzing matrix-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 193-205.
    12. Florackis, Chrisostomos & Kostakis, Alexandros & Ozkan, Aydin, 2009. "Managerial ownership and performance," Journal of Business Research, Elsevier, vol. 62(12), pages 1350-1357, December.
    13. Pierro, Marco & Perez, Richard & Perez, Marc & Prina, Matteo Giacomo & Moser, David & Cornaro, Cristina, 2021. "Italian protocol for massive solar integration: From solar imbalance regulation to firm 24/365 solar generation," Renewable Energy, Elsevier, vol. 169(C), pages 425-436.
    14. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.
    15. Turlach, Berwin A., 2006. "An even faster algorithm for ridge regression of reduced rank data," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 642-658, February.
    16. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    17. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    18. Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    19. Cervone, Guido & Clemente-Harding, Laura & Alessandrini, Stefano & Delle Monache, Luca, 2017. "Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble," Renewable Energy, Elsevier, vol. 108(C), pages 274-286.
    20. Gabriel Mendonça de Paiva & Sergio Pires Pimentel & Bernardo Pinheiro Alvarenga & Enes Gonçalves Marra & Marco Mussetta & Sonia Leva, 2020. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks," Energies, MDPI, vol. 13(11), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:121:y:2017:i:c:p:792-802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.