IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp649-656.html
   My bibliography  Save this article

Isolation and characterization of Saccharomyces species for bioethanol production from sugarcane molasses: Studies of scale up in bioreactor

Author

Listed:
  • Muruaga, María Laura
  • Carvalho, Kátia G.
  • Domínguez, José Manuel
  • de Souza Oliveira, Ricardo Pinheiro
  • Perotti, Nora

Abstract

Decreases in oil reserves and gas fields around all over the world justify the deepening of studies to render viable the larger-scale use of new energy sources. Therefore, the use of microorganisms to convert sugars into ethanol is a feasible process to be performed in a short period of time and at low costs. In this context, this study aimed to select ethanol-producing yeasts, after isolating samples in molasses obtained from companies in the Province of Tucumán (Argentina) and grapes obtained from farms located in Cafayate (Salta, Argentina). Among the twenty-nine samples studied A2, A10 and A11 isolates showed higher ethanol productions of 12.87; 13.64 and 13.46% respectively. A2 showed a homogeneous growth meanwhile the growth of strains A10 and A11 was flocculent. Molecular taxonomic characterization of these isolates showed a percentage of similarity of 100% with the strain Saccharomyces cerevisiae. The behavior of the non-flocculent A2 strain at laboratory scale was faster using a sugarcane molasses based medium, reaching 11.36% ethanol without adding nutrients and other growth factors, probably because its disperse form facilitates the transfer of nutrients and products. These values were improved to 12.02% when the process was scaled up to a 10L bioreactor. All these studies allowed concluding that S. cerevisiae A2 strain is a promising microorganism for the production of bioethanol with potential environmental, energy and economic benefits to be projected into industrial scale.

Suggested Citation

  • Muruaga, María Laura & Carvalho, Kátia G. & Domínguez, José Manuel & de Souza Oliveira, Ricardo Pinheiro & Perotti, Nora, 2016. "Isolation and characterization of Saccharomyces species for bioethanol production from sugarcane molasses: Studies of scale up in bioreactor," Renewable Energy, Elsevier, vol. 85(C), pages 649-656.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:649-656
    DOI: 10.1016/j.renene.2015.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115301051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Colin, Emerson C., 2009. "Mathematical programming accelerates implementation of agro-industrial sugarcane complex," European Journal of Operational Research, Elsevier, vol. 199(1), pages 232-235, November.
    2. Milan Pupin, Gustavo & Strachman, Eduardo, 2011. "El sector brasileño del azúcar y el alcohol: evolución, cadena productiva e innovaciones," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhiman, Saurabh Sudha & David, Aditi & Braband, Vanessa W. & Hussein, Abdulmenan & Salem, David R. & Sani, Rajesh K., 2017. "Improved bioethanol production from corn stover: Role of enzymes, inducers and simultaneous product recovery," Applied Energy, Elsevier, vol. 208(C), pages 1420-1429.
    2. Shanmugam, Sabarathinam & Ngo, Huu-Hao & Wu, Yi-Rui, 2020. "Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: A review," Renewable Energy, Elsevier, vol. 149(C), pages 1107-1119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Naranjo-Valencia & Ricardo Vidal-Patiño & Gregorio Calderón-Hernández, 2019. "Characterization of Innovation Research Published in Latin American Journals Indexed in WoS," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(07), pages 1-38, November.
    2. Helenice de O. Florentino & Dylan F. Jones & Chandra Ade Irawan & Djamila Ouelhadj & Banafesh Khosravi & Daniela R. Cantane, 2022. "An optimization model for combined selecting, planting and harvesting sugarcane varieties," Annals of Operations Research, Springer, vol. 314(2), pages 451-469, July.
    3. Aliano Filho, Angelo & A. Oliveira, Washington & Melo, Teresa, 2023. "Multi-objective optimization for integrated sugarcane cultivation and harvesting planning," European Journal of Operational Research, Elsevier, vol. 309(1), pages 330-344.
    4. Sushil Gupta & Hossein Rikhtehgar Berenji & Manish Shukla & Nagesh N. Murthy, 2023. "Opportunities in farming research from an operations management perspective," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1577-1596, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:649-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.