IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp472-483.html
   My bibliography  Save this article

Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry

Author

Listed:
  • Boubault, Antoine
  • Ho, Clifford K.
  • Hall, Aaron
  • Lambert, Timothy N.
  • Ambrosini, Andrea

Abstract

The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigated for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE—up to 12% of the value obtained for an uncoated receiver. The absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.

Suggested Citation

  • Boubault, Antoine & Ho, Clifford K. & Hall, Aaron & Lambert, Timothy N. & Ambrosini, Andrea, 2016. "Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry," Renewable Energy, Elsevier, vol. 85(C), pages 472-483.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:472-483
    DOI: 10.1016/j.renene.2015.06.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115300823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.06.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nuru, Z.Y. & Arendse, C.J. & Mongwaketsi, N. & Gohshal, S.K. & Nkosi, M. & Maaza, M., 2015. "Effects of substrate temperatures on the thermal stability of AlxOy/Pt/AlxOy multilayered selective solar absorber coatings," Renewable Energy, Elsevier, vol. 75(C), pages 590-597.
    2. Farooq, M. & Raja, Iftikhar A., 2008. "Optimisation of metal sputtered and electroplated substrates for solar selective coatings," Renewable Energy, Elsevier, vol. 33(6), pages 1275-1285.
    3. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    4. Yousif, K.M. & Smith, B.E. & Jeynes, C., 1994. "Study of durability of (molybdenum-copper)-black coatings in relation to their use as solar selective absorbers," Renewable Energy, Elsevier, vol. 5(1), pages 324-329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hakimi, M. & Baniasadi, E. & Afshari, E., 2020. "Thermo-economic analysis of photovoltaic, central tower receiver and parabolic trough power plants for Herat city in Afghanistan," Renewable Energy, Elsevier, vol. 150(C), pages 840-853.
    2. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    3. Dongli Tan & Yao Wu & Zhiqing Zhang & Yue Jiao & Lingchao Zeng & Yujun Meng, 2023. "Assessing the Life Cycle Sustainability of Solar Energy Production Systems: A Toolkit Review in the Context of Ensuring Environmental Performance Improvements," Sustainability, MDPI, vol. 15(15), pages 1-37, July.
    4. Caron, Simon & Garrido, Jorge & Ballestrín, Jesus & Sutter, Florian & Röger, Marc & Manzano-Agugliaro, Francisco, 2022. "A comparative analysis of opto-thermal figures of merit for high temperature solar thermal absorber coatings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Ahmed, Ahsan & Nadeem, Talha Bin & Naqvi, Asad A. & Siddiqui, Mubashir Ali & Khan, Muhammad Hamza & Bin Zahid, Muhammad Saad & Ammar, Syed Muhammad, 2022. "Investigation of PV utilizability on university buildings: A case study of Karachi, Pakistan," Renewable Energy, Elsevier, vol. 195(C), pages 238-251.
    6. Barbón, A. & Carreira-Fontao, V. & Bayón, L. & Silva, C.A., 2023. "Optimal design and cost analysis of single-axis tracking photovoltaic power plants," Renewable Energy, Elsevier, vol. 211(C), pages 626-646.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    2. Simshauser, P., 2019. "On the impact of government-initiated CfD’s in Australia’s National Electricity Market," Cambridge Working Papers in Economics 1901, Faculty of Economics, University of Cambridge.
    3. Spiros Papaefthimiou, Manolis Souliotis, and Kostas Andriosopoulos, 2016. "Grid parity of solar energy: imminent fact or future's fiction," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    4. Farooq, M. & Raja, Iftikhar A., 2008. "Optimisation of metal sputtered and electroplated substrates for solar selective coatings," Renewable Energy, Elsevier, vol. 33(6), pages 1275-1285.
    5. Bougette, Patrice & Charlier, Christophe, 2015. "Renewable energy, subsidies, and the WTO: Where has the ‘green’ gone?," Energy Economics, Elsevier, vol. 51(C), pages 407-416.
    6. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    7. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2020. "Wind energy potential and economic analysis with a comparison of different methods for determining the optimal distribution parameters," Renewable Energy, Elsevier, vol. 161(C), pages 1092-1109.
    8. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Chiappinelli, Olga & May, Nils, 2022. "Too good to be true? Time-inconsistent renewable energy policies," Energy Economics, Elsevier, vol. 112(C).
    10. Paul Simshauser & Joel Gilmore, 2018. "On entry cost dynamics in Australia's National Electricity Market," Working Papers EPRG 1841, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    11. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    12. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    13. Soini, Vesa, 2021. "Wind power intermittency and the balancing power market: Evidence from Denmark," Energy Economics, Elsevier, vol. 100(C).
    14. Simshauser, Paul & Billimoria, Farhad & Rogers, Craig, 2022. "Optimising VRE capacity in Renewable Energy Zones," Energy Economics, Elsevier, vol. 113(C).
    15. Rivera, Nathaly M. & Ruiz-Tagle, J. Cristobal & Spiller, Elisheba, 2024. "The health benefits of solar power generation: Evidence from Chile," Journal of Environmental Economics and Management, Elsevier, vol. 126(C).
    16. Duffy, Aidan & Hand, Maureen & Wiser, Ryan & Lantz, Eric & Dalla Riva, Alberto & Berkhout, Volker & Stenkvist, Maria & Weir, David & Lacal-Arántegui, Roberto, 2020. "Land-based wind energy cost trends in Germany, Denmark, Ireland, Norway, Sweden and the United States," Applied Energy, Elsevier, vol. 277(C).
    17. Aquila, Giancarlo & Coelho, Eden de Oliveira Pinto & Bonatto, Benedito Donizeti & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2021. "Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil," Energy, Elsevier, vol. 226(C).
    18. Teresa Romano & Tim Mennel & Sara Scatasta, 2017. "Comparing feed-in tariffs and renewable obligation certificates: the case of repowering wind farms," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 44(3), pages 291-314, September.
    19. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    20. Schmid, Eva & Knopf, Brigitte, 2015. "Quantifying the long-term economic benefits of European electricity system integration," Energy Policy, Elsevier, vol. 87(C), pages 260-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:472-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.