IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp626-646.html
   My bibliography  Save this article

Optimal design and cost analysis of single-axis tracking photovoltaic power plants

Author

Listed:
  • Barbón, A.
  • Carreira-Fontao, V.
  • Bayón, L.
  • Silva, C.A.

Abstract

The increasing penetration of photovoltaic technology in the electricity market requires the development of a methodology that facilitates the optimisation of photovoltaic plants with single-axis trackers. This paper presents an optimisation methodology that takes into account the most important design variables of single-axis photovoltaic plants, including irregular land shape, size and configuration of the mounting system, row spacing, and operating periods (for backtracking mode, limited range of motion, and normal tracking mode). Equations for the determination of the optimal row spacing and operating periods have been developed and is presented in detail. A packing algorithm that takes into account the irregular land shape and the possible configurations of the mounting systems is also presented. The objective function is the total area of the photovoltaic field and the optimisation is performed by a packing algorithm. As the economic aspect of energy generation also plays a key role in decision-making, the levelised cost of energy has been used to assess the economic viability of the optimal layout of the mounting systems. The results show that the proposed methodology and packing algorithm are able to optimise the photovoltaic plant with single-axis solar tracking and provide reliable results after a reasonable computation time. The methodology was demonstrated in detail for a Spanish photovoltaic plant (Granjera photovoltaic power plant), including the optimal layout of the mounting systems and the cost analysis for this layout. The optimal layout of the mounting systems could increase the amount of energy captured by 91.18% in relation to the current of Granjera photovoltaic power plant. The mounting system configuration used in the optimal layout is the one with the best levelised cost of energy efficiency, 1.09. The presented optimisation methodology can be utilised to facilitate the optimal design of commercial photovoltaic plants with single-axis trackers. Therefore, questions such as: what is the optimal distribution of mounting systems?, how much energy will this distribution produce?, and at what cost will it produce it?, can be answered by using the proposed methodology.

Suggested Citation

  • Barbón, A. & Carreira-Fontao, V. & Bayón, L. & Silva, C.A., 2023. "Optimal design and cost analysis of single-axis tracking photovoltaic power plants," Renewable Energy, Elsevier, vol. 211(C), pages 626-646.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:626-646
    DOI: 10.1016/j.renene.2023.04.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812300575X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Talavera, D.L. & Muñoz-Cerón, Emilio & Ferrer-Rodríguez, J.P. & Pérez-Higueras, Pedro J., 2019. "Assessment of cost-competitiveness and profitability of fixed and tracking photovoltaic systems: The case of five specific sites," Renewable Energy, Elsevier, vol. 134(C), pages 902-913.
    2. Casares de la Torre, F.J. & Varo, Marta & López-Luque, R. & Ramírez-Faz, J. & Fernández-Ahumada, L.M., 2022. "Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants," Renewable Energy, Elsevier, vol. 187(C), pages 537-550.
    3. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "Determination of the optimal tilt angle and orientation for solar photovoltaic arrays," Renewable Energy, Elsevier, vol. 35(11), pages 2468-2475.
    4. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    5. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    6. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Fernández-Rubiera, J.A., 2020. "Predicting beam and diffuse horizontal irradiance using Fourier expansions," Renewable Energy, Elsevier, vol. 154(C), pages 46-57.
    7. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    8. Fan, Junliang & Chen, Baiquan & Wu, Lifeng & Zhang, Fucang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions," Energy, Elsevier, vol. 144(C), pages 903-914.
    9. Armstrong, S. & Hurley, W.G., 2010. "A new methodology to optimise solar energy extraction under cloudy conditions," Renewable Energy, Elsevier, vol. 35(4), pages 780-787.
    10. Barbón, A. & Ayuso, P. Fortuny & Bayón, L. & Silva, C.A., 2021. "A comparative study between racking systems for photovoltaic power systems," Renewable Energy, Elsevier, vol. 180(C), pages 424-437.
    11. Hua, Zhengcao & Ma, Chao & Lian, Jijian & Pang, Xiulan & Yang, Weichao, 2019. "Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand," Applied Energy, Elsevier, vol. 238(C), pages 721-733.
    12. Patel, M. Tahir & Khan, M. Ryyan & Sun, Xingshu & Alam, Muhammad A., 2019. "A worldwide cost-based design and optimization of tilted bifacial solar farms," Applied Energy, Elsevier, vol. 247(C), pages 467-479.
    13. Conceição, Ricardo & Silva, Hugo G. & Fialho, Luis & Lopes, Francis M. & Collares-Pereira, Manuel, 2019. "PV system design with the effect of soiling on the optimum tilt angle," Renewable Energy, Elsevier, vol. 133(C), pages 787-796.
    14. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    15. Hay, John E., 1993. "Calculating solar radiation for inclined surfaces: Practical approaches," Renewable Energy, Elsevier, vol. 3(4), pages 373-380.
    16. Aronescu, A. & Appelbaum, J., 2017. "Design optimization of photovoltaic solar fields-insight and methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 882-893.
    17. Makhdoomi, Sina & Askarzadeh, Alireza, 2021. "Impact of solar tracker and energy storage system on sizing of hybrid energy systems: A comparison between diesel/PV/PHS and diesel/PV/FC," Energy, Elsevier, vol. 231(C).
    18. Bahrami, Arian & Okoye, Chiemeka Onyeka, 2018. "The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 138-151.
    19. Gao, Yuan & Dong, Jianfei & Isabella, Olindo & Santbergen, Rudi & Tan, Hairen & Zeman, Miro & Zhang, Guoqi, 2019. "Modeling and analyses of energy performances of photovoltaic greenhouses with sun-tracking functionality," Applied Energy, Elsevier, vol. 233, pages 424-442.
    20. Boubault, Antoine & Ho, Clifford K. & Hall, Aaron & Lambert, Timothy N. & Ambrosini, Andrea, 2016. "Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry," Renewable Energy, Elsevier, vol. 85(C), pages 472-483.
    21. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Carreira-Fontao, V., 2022. "A methodology for an optimal design of ground-mounted photovoltaic power plants," Applied Energy, Elsevier, vol. 314(C).
    22. Salazar, Germán & Gueymard, Christian & Galdino, Janis Bezerra & de Castro Vilela, Olga & Fraidenraich, Naum, 2020. "Solar irradiance time series derived from high-quality measurements, satellite-based models, and reanalyses at a near-equatorial site in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Ivaneth Luna Alvarino & Vladimir Sousa Santos & Jairo Ricardo González, 2024. "Design of Photovoltaic Systems in Industrial Electrical Systems Considering Power Quality," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 142-153, May.
    2. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Carreira-Fontao, V., 2022. "A methodology for an optimal design of ground-mounted photovoltaic power plants," Applied Energy, Elsevier, vol. 314(C).
    2. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    3. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    4. Arsenio Barbón & Luis Bayón & Guzmán Díaz & Carlos A. Silva, 2022. "Investigation of the Effect of Albedo in Photovoltaic Systems for Urban Applications: Case Study for Spain," Energies, MDPI, vol. 15(21), pages 1-20, October.
    5. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Rodríguez-Suanzes, C., 2022. "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications," Applied Energy, Elsevier, vol. 305(C).
    6. Barbón, A. & Ayuso, P. Fortuny & Bayón, L. & Silva, C.A., 2021. "A comparative study between racking systems for photovoltaic power systems," Renewable Energy, Elsevier, vol. 180(C), pages 424-437.
    7. Rodrigo, Pedro M. & Gutiérrez, Sebastián & Micheli, Leonardo & Fernández, Eduardo F. & Almonacid, Florencia, 2020. "Optimum cleaning schedule of photovoltaic systems based on levelised cost of energy and case study in central Mexico," MPRA Paper 104173, University Library of Munich, Germany.
    8. Vaziri Rad, Mohammad Amin & Toopshekan, Ashkan & Rahdan, Parisa & Kasaeian, Alibakhsh & Mahian, Omid, 2020. "A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    9. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    10. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    11. Micheli, Leonardo & Fernandez, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2020. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," MPRA Paper 104104, University Library of Munich, Germany.
    12. Ji, Zhengsen & Li, Wanying & Niu, Dongxiao, 2024. "Optimal investment decision of agrivoltaic coupling energy storage project based on distributed linguistic trust and hybrid evaluation method," Applied Energy, Elsevier, vol. 353(PA).
    13. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    14. Rodrigo, Pedro M. & Mouhib, Elmehdi & Fernandez, Eduardo F. & Almonacid, Florencia & Rosas-Caro, Julio C., 2024. "Comprehensive ground coverage analysis of large-scale fixed-tilt bifacial photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Micheli, Leonardo & Fernández, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2021. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," Energy, Elsevier, vol. 215(PA).
    16. Dinesh, Harshavardhan & Pearce, Joshua M., 2016. "The potential of agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 299-308.
    17. Ruan, Tianqi & Wang, Fuxing & Topel, Monika & Laumert, Björn & Wang, Wujun, 2024. "A new optimal PV installation angle model in high-latitude cold regions based on historical weather big data," Applied Energy, Elsevier, vol. 359(C).
    18. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    19. Jägemann, Cosima & Hagspiel, Simeon & Lindenberger, Dietmar, 2013. "The Economic Inefficiency of Grid Parity: The Case of German Photovoltaics," EWI Working Papers 2013-19, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:626-646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.