IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp454-463.html
   My bibliography  Save this article

Aerodynamics of wind turbine wakes in flat and complex terrains

Author

Listed:
  • Subramanian, B.
  • Chokani, N.
  • Abhari, R.S.

Abstract

The wake evolution measured downstream of multi-megawatt wind turbines located in flat and complex terrains are described here. These high-resolution measurements at full-scale Reynolds number conditions are made with an instrumented drone that is equipped with a suite of sensors and detail the characteristics of the mean flow and turbulent kinetic energy in the evolving wake. Reynolds decomposition yields the nature of turbulent fluctuations in surface layer, and this decomposition is used to detail the turbulence statistics, degree of anisotropy and friction velocity. These measurements are shown to be suited for the further development of three-dimensional wake models that are currently under intensive development.

Suggested Citation

  • Subramanian, B. & Chokani, N. & Abhari, R.S., 2016. "Aerodynamics of wind turbine wakes in flat and complex terrains," Renewable Energy, Elsevier, vol. 85(C), pages 454-463.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:454-463
    DOI: 10.1016/j.renene.2015.06.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115300835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.06.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Shammari, Eiman Tamah & Shamshirband, Shahaboddin & Petković, Dalibor & Zalnezhad, Erfan & Yee, Por Lip & Taher, Ros Suraya & Ćojbašić, Žarko, 2016. "Comparative study of clustering methods for wake effect analysis in wind farm," Energy, Elsevier, vol. 95(C), pages 573-579.
    2. Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    3. Wang, Qiang & Luo, Kun & Yuan, Renyu & Wang, Shuai & Fan, Jianren & Cen, Kefa, 2020. "A multiscale numerical framework coupled with control strategies for simulating a wind farm in complex terrain," Energy, Elsevier, vol. 203(C).
    4. Wei Li & Shinai Xu & Baiyun Qian & Xiaoxia Gao & Xiaoxun Zhu & Zeqi Shi & Wei Liu & Qiaoliang Hu, 2022. "Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review," Sustainability, MDPI, vol. 14(24), pages 1-29, December.
    5. Pacheco de Sá Sarmiento, Franciene Izis & Goes Oliveira, Jorge Luiz & Passos, Júlio César, 2022. "Impact of atmospheric stability, wake effect and topography on power production at complex-terrain wind farm," Energy, Elsevier, vol. 239(PC).
    6. Zahid Mehmood & Zhenyu Wang & Xin Zhang & Guiying Shen, 2024. "Aerodynamic Performance and Numerical Validation Study of a Scaled-Down and Full-Scale Wind Turbine Models," Energies, MDPI, vol. 17(21), pages 1-22, October.
    7. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:454-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.