IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp644-654.html
   My bibliography  Save this article

Smart control of a horizontal axis wind turbine using dielectric barrier discharge plasma actuators

Author

Listed:
  • Jukes, Timothy N.

Abstract

Rotating stall around a small-scale horizontal axis wind turbine was experimentally studied to characterize and assess smart rotor control by plasma actuators. Phase-locked Particle Image Velocimetry was used to map the flow over the rotor blade suction surface at numerous radial stations at a range of tip-speed-ratios. Flow separation occurred from the inboard of the blade and spread radially outwards as the tip-speed-ratio reduced. Plasma actuators placed along the span that produced a chord-wise body force had very little effect on the flow separation, even when operated in pulsed forcing mode. In contrast, plasma actuators along the blade chord that produced a body force into the radial directions (plasma vortex generators) successfully mitigated rotating stall. Torque due to aerodynamic drag was reduced by up to 22% at the lowest tip-speed-ratio of 3.7, suppressing stall over the outboard 50% of the blade. This was due to quasi-two-dimensional flow reattachment in the outboard region, and shifting of a fully stalled zone towards the hub in the inboard region because the plasma-induced body force counteracted the Coriolis-induced radial flow. This can significantly increase the turbine power output in unfavourable wind conditions and during start-up.

Suggested Citation

  • Jukes, Timothy N., 2015. "Smart control of a horizontal axis wind turbine using dielectric barrier discharge plasma actuators," Renewable Energy, Elsevier, vol. 80(C), pages 644-654.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:644-654
    DOI: 10.1016/j.renene.2015.02.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.02.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greenblatt, David & Schulman, Magen & Ben-Harav, Amos, 2012. "Vertical axis wind turbine performance enhancement using plasma actuators," Renewable Energy, Elsevier, vol. 37(1), pages 345-354.
    2. Yu, Guohua & Shen, Xin & Zhu, Xiaocheng & Du, Zhaohui, 2011. "An insight into the separate flow and stall delay for HAWT," Renewable Energy, Elsevier, vol. 36(1), pages 69-76.
    3. Walker, Seth & Segawa, Takehiko, 2012. "Mitigation of flow separation using DBD plasma actuators on airfoils: A tool for more efficient wind turbine operation," Renewable Energy, Elsevier, vol. 42(C), pages 105-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    2. Gorle, J.M.R. & Chatellier, L. & Pons, F. & Ba, M., 2019. "Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 363-377.
    3. López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    5. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    6. Hikaru Aono & Hiroaki Fukumoto & Yoshiaki Abe & Makoto Sato & Taku Nonomura & Kozo Fujii, 2020. "Separated Flow Control of Small Horizontal-Axis Wind Turbine Blades Using Dielectric Barrier Discharge Plasma Actuators," Energies, MDPI, vol. 13(5), pages 1-16, March.
    7. Mahboubidoust, A. & Ramiar, A., 2017. "Investigation of DBD plasma actuator effect on the aerodynamic and thermodynamic performance of high solidity Wells turbine," Renewable Energy, Elsevier, vol. 112(C), pages 347-364.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    2. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    3. Celik, Yunus & Ingham, Derek & Ma, Lin & Pourkashanian, Mohamed, 2022. "Design and aerodynamic performance analyses of the self-starting H-type VAWT having J-shaped aerofoils considering various design parameters using CFD," Energy, Elsevier, vol. 251(C).
    4. Zaki, Abanoub & Abdelrahman, M.A. & Ayad, Samir S. & Abdellatif, O.E., 2022. "Effects of leading edge slat on the aerodynamic performance of low Reynolds number horizontal axis wind turbine," Energy, Elsevier, vol. 239(PD).
    5. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction," Energy, Elsevier, vol. 189(C).
    6. Velasco, D. & López Mejia, O. & Laín, S., 2017. "Numerical simulations of active flow control with synthetic jets in a Darrieus turbine," Renewable Energy, Elsevier, vol. 113(C), pages 129-140.
    7. Jin, Xin & Wang, Yaming & Ju, Wenbin & He, Jiao & Xie, Shuangyi, 2018. "Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation," Renewable Energy, Elsevier, vol. 115(C), pages 41-53.
    8. Wang, Longjun & Alam, Md. Mahbub & Rehman, Shafiqur & Zhou, Yu, 2022. "Effects of blowing and suction jets on the aerodynamic performance of wind turbine airfoil," Renewable Energy, Elsevier, vol. 196(C), pages 52-64.
    9. Sutrisno . & Deendarlianto . & Indarto . & Sigit Iswahyudi & Muhammad Bramantya & Setyawan Wibowo, 2017. "Performances and Stall Delays of Three Dimensional Wind Turbine Blade Plate-Models with Helicopter-Like Propeller Blade Tips," Modern Applied Science, Canadian Center of Science and Education, vol. 11(10), pages 189-189, October.
    10. Sutrisno . & Prajitno . & Purnomo . & B.W. Setyawan, 2016. "The Performance & Flow Visualization Studies of Three dimensional (3-D) Wind Turbine Blade Models," Modern Applied Science, Canadian Center of Science and Education, vol. 10(5), pages 132-132, May.
    11. Hamdan, A. & Mustapha, F. & Ahmad, K.A. & Mohd Rafie, A.S., 2014. "A review on the micro energy harvester in Structural Health Monitoring (SHM) of biocomposite material for Vertical Axis Wind Turbine (VAWT) system: A Malaysia perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 23-30.
    12. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2020. "URANS simulations of a horizontal axis wind turbine under stall condition using Reynolds stress turbulence models," Energy, Elsevier, vol. 213(C).
    13. Xu, Wen & Li, Cheng-cheng & Huang, Sheng-xian & Wang, Ying, 2022. "Aerodynamic performance improvement analysis of Savonius Vertical Axis Wind Turbine utilizing plasma excitation flow control," Energy, Elsevier, vol. 239(PD).
    14. Qiu, Yong-Xing & Wang, Xiao-Dong & Kang, Shun & Zhao, Ming & Liang, Jun-Yu, 2014. "Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method," Renewable Energy, Elsevier, vol. 70(C), pages 93-106.
    15. Walker, Seth & Segawa, Takehiko, 2012. "Mitigation of flow separation using DBD plasma actuators on airfoils: A tool for more efficient wind turbine operation," Renewable Energy, Elsevier, vol. 42(C), pages 105-110.
    16. Li, Qing'an & Xu, Jianzhong & Maeda, Takao & Kamada, Yasunari & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2019. "Laser Doppler Velocimetry (LDV) measurements of airfoil surface flow on a Horizontal Axis Wind Turbine in boundary layer," Energy, Elsevier, vol. 183(C), pages 341-357.
    17. Chen, Jian & Zhang, Yu & Xu, Zhongyun & Li, Chun, 2023. "Flow characteristics analysis and power comparison for two novel types of vertically staggered wind farms," Energy, Elsevier, vol. 263(PE).
    18. Hikaru Aono & Hiroaki Fukumoto & Yoshiaki Abe & Makoto Sato & Taku Nonomura & Kozo Fujii, 2020. "Separated Flow Control of Small Horizontal-Axis Wind Turbine Blades Using Dielectric Barrier Discharge Plasma Actuators," Energies, MDPI, vol. 13(5), pages 1-16, March.
    19. Greenblatt, David & Lautman, Ronen, 2015. "Inboard/outboard plasma actuation on a vertical-axis wind turbine," Renewable Energy, Elsevier, vol. 83(C), pages 1147-1156.
    20. Chen, Bei & Hua, Xugang & Zhang, Zili & Nielsen, Søren R.K. & Chen, Zhengqing, 2021. "Active flutter control of the wind turbines using double-pitched blades," Renewable Energy, Elsevier, vol. 163(C), pages 2081-2097.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:644-654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.