IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v69y2014icp386-392.html
   My bibliography  Save this article

Determining optimal operating pressure for AaltoRO – A novel wave powered desalination system

Author

Listed:
  • Ylänen, Markus M.M.
  • Lampinen, Markku J.

Abstract

The wave powered desalination system named AaltoRO is presented in this paper and the optimum pressure level for its operation is determined. AaltoRO consists of a WaveRoller Wave Energy Converter (WEC), unique Adaptive Pressure Generator (APG), standard Reverse Osmosis (RO) membranes and a hydraulic turbocharger for energy recovery. Due to its unique features, standard operating and design methods for RO systems cannot be wholly applied. Especially the chosen pretreatment system differs greatly from standard systems. The optimum operating pressure was determined to be 45 bar, a much lower value than the standard 60–65 bar. Operating with 45 bar pressure level enables economical operation while allowing the recovery rate to be kept low, thus ensuring safe operation for the entire system.

Suggested Citation

  • Ylänen, Markus M.M. & Lampinen, Markku J., 2014. "Determining optimal operating pressure for AaltoRO – A novel wave powered desalination system," Renewable Energy, Elsevier, vol. 69(C), pages 386-392.
  • Handle: RePEc:eee:renene:v:69:y:2014:i:c:p:386-392
    DOI: 10.1016/j.renene.2014.03.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114002365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.03.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    2. Sharmila, N. & Jalihal, Purnima & Swamy, A.K. & Ravindran, M., 2004. "Wave powered desalination system," Energy, Elsevier, vol. 29(11), pages 1659-1672.
    3. Heikkinen, Heidi & Lampinen, Markku J. & Böling, Jari, 2013. "Analytical study of the interaction between waves and cylindrical wave energy converters oscillating in two modes," Renewable Energy, Elsevier, vol. 50(C), pages 150-160.
    4. El-Ghonemy, A.M.K., 2012. "Water desalination systems powered by renewable energy sources: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1537-1556.
    5. Folley, Matt & Whittaker, Trevor, 2009. "The cost of water from an autonomous wave-powered desalination plant," Renewable Energy, Elsevier, vol. 34(1), pages 75-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schallenberg-Rodríguez, Julieta & Del Rio-Gamero, Beatriz & Melian-Martel, Noemi & Lis Alecio, Tyrone & González Herrera, Javier, 2020. "Energy supply of a large size desalination plant using wave energy. Practical case: North of Gran Canaria," Applied Energy, Elsevier, vol. 278(C).
    2. Jeremy W. Simmons & James D. Van de Ven, 2023. "A Comparison of Power Take-Off Architectures for Wave-Powered Reverse Osmosis Desalination of Seawater with Co-Production of Electricity," Energies, MDPI, vol. 16(21), pages 1-33, October.
    3. Foteinis, S. & Tsoutsos, T., 2017. "Strategies to improve sustainability and offset the initial high capital expenditure of wave energy converters (WECs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 775-785.
    4. Li, Zhenyu & Siddiqi, Afreen & Anadon, Laura Diaz & Narayanamurti, Venkatesh, 2018. "Towards sustainability in water-energy nexus: Ocean energy for seawater desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3833-3847.
    5. Esmaeil Ahmadi & Benjamin McLellan & Seiichi Ogata & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "An Integrated Planning Framework for Sustainable Water and Energy Supply," Sustainability, MDPI, vol. 12(10), pages 1-37, May.
    6. Mi, Jia & Wu, Xian & Capper, Joseph & Li, Xiaofan & Shalaby, Ahmed & Wang, Ruoyu & Lin, Shihong & Hajj, Muhammad & Zuo, Lei, 2023. "Experimental investigation of a reverse osmosis desalination system directly powered by wave energy," Applied Energy, Elsevier, vol. 343(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    2. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    3. Pinto, F. Silva & Marques, R. Cunha, 2017. "Desalination projects economic feasibility: A standardization of cost determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 904-915.
    4. Mi, Jia & Wu, Xian & Capper, Joseph & Li, Xiaofan & Shalaby, Ahmed & Wang, Ruoyu & Lin, Shihong & Hajj, Muhammad & Zuo, Lei, 2023. "Experimental investigation of a reverse osmosis desalination system directly powered by wave energy," Applied Energy, Elsevier, vol. 343(C).
    5. Sricharan, V.V.S. & Chandrasekaran, Srinivasan, 2021. "Time-domain analysis of a bean-shaped multi-body floating wave energy converter with a hydraulic power take-off using WEC-Sim," Energy, Elsevier, vol. 223(C).
    6. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    7. Schallenberg-Rodríguez, Julieta & Del Rio-Gamero, Beatriz & Melian-Martel, Noemi & Lis Alecio, Tyrone & González Herrera, Javier, 2020. "Energy supply of a large size desalination plant using wave energy. Practical case: North of Gran Canaria," Applied Energy, Elsevier, vol. 278(C).
    8. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    9. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    10. Foteinis, S. & Tsoutsos, T., 2017. "Strategies to improve sustainability and offset the initial high capital expenditure of wave energy converters (WECs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 775-785.
    11. El-Ghonemy, A.M.K., 2012. "Fresh water production from/by atmospheric air for arid regions, using solar energy: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6384-6422.
    12. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    13. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.
    14. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    15. Liu, Zhen-hua & Hu, Ren-Lin & Chen, Xiu-juan, 2014. "A novel integrated solar desalination system with multi-stage evaporation/heat recovery processes," Renewable Energy, Elsevier, vol. 64(C), pages 26-33.
    16. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    17. Jayashankar, V. & Anand, S. & Geetha, T. & Santhakumar, S. & Jagadeesh Kumar, V. & Ravindran, M. & Setoguchi, T. & Takao, M. & Toyota, K. & Nagata, S., 2009. "A twin unidirectional impulse turbine topology for OWC based wave energy plants," Renewable Energy, Elsevier, vol. 34(3), pages 692-698.
    18. López, M. & Taveira-Pinto, F. & Rosa-Santos, P., 2017. "Influence of the power take-off characteristics on the performance of CECO wave energy converter," Energy, Elsevier, vol. 120(C), pages 686-697.
    19. Garzozi, A. & Greenblatt, D., 2022. "Exploiting the Coandă effect for wind-driven reciprocating RO desalination," Energy, Elsevier, vol. 238(PC).
    20. Kim, Albert S. & Kim, Hyeon-Ju & Lee, Ho-Saeng & Cha, Sangwon, 2016. "Dual-use open cycle ocean thermal energy conversion (OC-OTEC) using multiple condensers for adjustable power generation and seawater desalination," Renewable Energy, Elsevier, vol. 85(C), pages 344-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:69:y:2014:i:c:p:386-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.