IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp595-601.html
   My bibliography  Save this article

Power generation from geothermal resources in Turkey

Author

Listed:
  • Aksoy, Niyazi

Abstract

This study provides information on power generation via geothermal resources and sector development. The first instance of power generation from geothermal resources was performed by a state-owned power plant at Kızıldere-Denizli, whereas the first private sector investment was the Dora-I power plant, commissioned in 2006. Legislation regulating rights ownership and certification laws was issued in 2007. The installed capacity of the geothermal resources is 311.871 MW for 16 power plants, and power generation licenses were issued for 713.541 MW at the end of 2012. The total potential geothermal power that can be generated in Turkey is estimated to be approximately 2000 MW. The geothermal fields in Turkey produce high levels of greenhouse gases, which have been deemed highly responsible for global warming. Due to high CO2 emissions, the geothermal energy sector risks a carbon tax in the near future. For certain geothermal resources, multiple investors produce electricity from the same resource. The sector will inevitably experience severe damage unless permanent solutions are devised for problems related to sustainably managing geothermal resources and environmental problems.

Suggested Citation

  • Aksoy, Niyazi, 2014. "Power generation from geothermal resources in Turkey," Renewable Energy, Elsevier, vol. 68(C), pages 595-601.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:595-601
    DOI: 10.1016/j.renene.2014.02.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114001402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.02.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    2. Melikoglu, Mehmet, 2017. "Geothermal energy in Turkey and around the World: A review of the literature and an analysis based on Turkey's Vision 2023 energy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 485-492.
    3. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    4. Rivera Diaz, Alexandre & Kaya, Eylem & Zarrouk, Sadiq J., 2016. "Reinjection in geothermal fields − A worldwide review update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 105-162.
    5. Fatma Canka Kilic, 2016. "Geothermal Energy in Turkey," Energy & Environment, , vol. 27(3-4), pages 360-376, May.
    6. Yousefi-Sahzabi, Amin & Unlu-Yucesoy, Eda & Sasaki, Kyuro & Yuosefi, Hossein & Widiatmojo, Arif & Sugai, Yuichi, 2017. "Turkish challenges for low-carbon society: Current status, government policies and social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 596-608.
    7. Salaheddine Chabab & José Lara Cruz & Marie Poulain & Marion Ducousso & François Contamine & Jean Paul Serin & Pierre Cézac, 2021. "Thermodynamic Modeling of Mutual Solubilities in Gas-Laden Brines Systems Containing CO 2 , CH 4 , N 2 , O 2 , H 2 , H 2 O, NaCl, CaCl 2 , and KCl: Application to Degassing in Geothermal Processes," Energies, MDPI, vol. 14(17), pages 1-22, August.
    8. Melikoglu, Mehmet, 2016. "The role of renewables and nuclear energy in Turkey׳s Vision 2023 energy targets: Economic and technical scrutiny," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1-12.
    9. O'Sullivan, Michael & Gravatt, Michael & Popineau, Joris & O'Sullivan, John & Mannington, Warren & McDowell, Julian, 2021. "Carbon dioxide emissions from geothermal power plants," Renewable Energy, Elsevier, vol. 175(C), pages 990-1000.
    10. Fechner, Dorothee & Kondek, Milena & Kölbel, Thomas & Kolb, Jochen, 2022. "CO2 handling in binary geothermal systems — A modelling approach for different CO2 contents, salinity, pressure and temperature conditions," Renewable Energy, Elsevier, vol. 201(P1), pages 780-791.
    11. Kivanc Ates, H. & Serpen, U., 2016. "Power plant selection for medium to high enthalpy geothermal resources of Turkey," Energy, Elsevier, vol. 102(C), pages 287-301.
    12. Ciani Bassetti, Martina & Consoli, Daniele & Manente, Giovanni & Lazzaretto, Andrea, 2018. "Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage," Renewable Energy, Elsevier, vol. 128(PB), pages 460-472.
    13. Yilmaz, Ceyhun & Koyuncu, Ismail, 2021. "Thermoeconomic modeling and artificial neural network optimization of Afyon geothermal power plant," Renewable Energy, Elsevier, vol. 163(C), pages 1166-1181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez, Rafael & Díaz, María B., 2009. "Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method," Renewable Energy, Elsevier, vol. 34(7), pages 1716-1725.
    2. Sanchez-Alfaro, Pablo & Sielfeld, Gerd & Campen, Bart Van & Dobson, Patrick & Fuentes, Víctor & Reed, Andy & Palma-Behnke, Rodrigo & Morata, Diego, 2015. "Geothermal barriers, policies and economics in Chile – Lessons for the Andes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1390-1401.
    3. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    4. Zhang, Tao & Li, Yiteng & Chen, Yin & Feng, Xiaoyu & Zhu, Xingyu & Chen, Zhangxing & Yao, Jun & Zheng, Yongchun & Cai, Jianchao & Song, Hongqing & Sun, Shuyu, 2021. "Review on space energy," Applied Energy, Elsevier, vol. 292(C).
    5. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    6. Hai, Tao & Asadollahzadeh, Muhammad & Chauhan, Bhupendra Singh & AlQemlas, Turki & Elbadawy, Ibrahim & Salah, Bashir & Feyzbaxsh, Mahrad, 2023. "3E investigation and artificial neural network optimization of a new triple-flash geothermally-powered configuration," Renewable Energy, Elsevier, vol. 215(C).
    7. Sowizdzal, Anna, 2018. "Geothermal energy resources in Poland – Overview of the current state of knowledge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4020-4027.
    8. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    9. Abbas, Tauqeer & Ahmed Bazmi, Aqeel & Waheed Bhutto, Abdul & Zahedi, Gholamreza, 2014. "Greener energy: Issues and challenges for Pakistan-geothermal energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 258-269.
    10. Cheng, Sharon W.Y. & Kurnia, Jundika C. & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2019. "Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method," Energy, Elsevier, vol. 188(C).
    11. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Xie, Kun, 2014. "Evaluation of working fluids for geothermal power generation from abandoned oil wells," Applied Energy, Elsevier, vol. 118(C), pages 238-245.
    12. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    13. Qiang Li & Tubing Yin & Xibing Li & Ronghua Shu, 2021. "Experimental and Numerical Investigation on Thermal Damage of Granite Subjected to Heating and Cooling," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    14. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    15. Daniilidis, Alexandros & Herber, Rien, 2017. "Salt intrusions providing a new geothermal exploration target for higher energy recovery at shallower depths," Energy, Elsevier, vol. 118(C), pages 658-670.
    16. Cho, Sangmin & Kim, Jinsoo & Heo, Eunnyeong, 2015. "Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1075-1083.
    17. Etemoglu, A.B. & Can, M., 2007. "Classification of geothermal resources in Turkey by exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1596-1606, September.
    18. Coskun, C. & Oktay, Z. & Dincer, I., 2011. "Modified exergoeconomic modeling of geothermal power plants," Energy, Elsevier, vol. 36(11), pages 6358-6366.
    19. Chen, Xia & Fu, Qiang & Chang, Chun-Ping, 2021. "What are the shocks of climate change on clean energy investment: A diversified exploration," Energy Economics, Elsevier, vol. 95(C).
    20. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.

    More about this item

    Keywords

    Geothermal energy; Power generation; CO2 emission; Turkey;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:595-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.