IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v65y2014icp2-6.html
   My bibliography  Save this article

The quantitative evaluation of design parameter's effects on a ground source heat pump system

Author

Listed:
  • Cho, Honghyun
  • Choi, Jong Min

Abstract

The main solution for the reduction of energy consumption in the field of HVAC is the development of new and renewable energy technologies. Among the various renewable energy systems, ground source heat pump (GSHP) systems have been spotlighted as efficient building energy systems because of their great potentials for energy reduction in building air conditioning and reducing CO2 emissions. However, higher initial cost works as a barrier to the promotion of their use. Therefore, it is critical to reduce the initial costs by optimizing the design of the system. In this paper, parameters that affect the performance of the GSHP system and the size of ground loop heat exchanger (GLHX) have been investigated. Ratio of GLHX length to unit capacity (L/Q) decreased according to increasing value of thermal conductivity, but L/Q increased according to increasing value of borehole heat transfer resistance. In cooling mode, L/Q decreased according to increasing EWT of underground circulating water and borehole distance but increased in heating mode. The value of L/Q tended to increase according to increasing underground initial temperature in cooling mode, but decreased in heating mode. L/Q decreased according to increasing U-tube separation distance and decreasing underground circulating water flow rate, because the thermal interference effect of underground circulating water and heat absorption and emission rate from the ground decreased. The reduction of the size of GLHX is very important in the aspect of saving total installation cost of a GSHP system. Therefore, the size of GLHX and the performance of GSHP system should be considered together for optimum design of the GSHP system.

Suggested Citation

  • Cho, Honghyun & Choi, Jong Min, 2014. "The quantitative evaluation of design parameter's effects on a ground source heat pump system," Renewable Energy, Elsevier, vol. 65(C), pages 2-6.
  • Handle: RePEc:eee:renene:v:65:y:2014:i:c:p:2-6
    DOI: 10.1016/j.renene.2013.06.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113003273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.06.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    2. Chung, Jin Taek & Choi, Jong Min, 2012. "Design and performance study of the ground-coupled heat pump system with an operating parameter," Renewable Energy, Elsevier, vol. 42(C), pages 118-124.
    3. Aikins, Kojo Atta & Choi, Jong Min, 2012. "Current status of the performance of GSHP (ground source heat pump) units in the Republic of Korea," Energy, Elsevier, vol. 47(1), pages 77-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    2. Zhang, Changxing & Chen, Ping & Liu, Yufeng & Sun, Shicai & Peng, Donggen, 2015. "An improved evaluation method for thermal performance of borehole heat exchanger," Renewable Energy, Elsevier, vol. 77(C), pages 142-151.
    3. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    4. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    5. Girard, Aymeric & Gago, Eulalia Jadraque & Muneer, Tariq & Caceres, Gustavo, 2015. "Higher ground source heat pump COP in a residential building through the use of solar thermal collectors," Renewable Energy, Elsevier, vol. 80(C), pages 26-39.
    6. Zhang, Xueping & Han, Zongwei & Meng, Xinwei & Li, Gui & Ji, Qiang & Li, Xiuming & Yang, Lingyan, 2021. "Study on high-precision identification method of ground thermal properties based on neural network model," Renewable Energy, Elsevier, vol. 163(C), pages 1838-1848.
    7. Javed, Saqib & Spitler, Jeffrey, 2017. "Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers," Applied Energy, Elsevier, vol. 187(C), pages 790-806.
    8. Naylor, Shawn & Ellett, Kevin M. & Gustin, Andrew R., 2015. "Spatiotemporal variability of ground thermal properties in glacial sediments and implications for horizontal ground heat exchanger design," Renewable Energy, Elsevier, vol. 81(C), pages 21-30.
    9. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "Optimization of ground heat exchanger parameters of ground source heat pump system for space heating applications," Energy, Elsevier, vol. 78(C), pages 573-586.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    2. Christoph P. Kiefer & Pablo Del Río González & Javier Carrillo‐Hermosilla, 2019. "Drivers and barriers of eco‐innovation types for sustainable transitions: A quantitative perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 155-172, January.
    3. Moritz Bohland & Sebastian Schwenen, 2020. "Technology Policy and Market Structure: Evidence from the Power Sector," Discussion Papers of DIW Berlin 1856, DIW Berlin, German Institute for Economic Research.
    4. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    5. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    6. Bongsuk Sung & Myoung Shik Choi & Woo-Yong Song, 2019. "Exploring the Effects of Government Policies on Economic Performance: Evidence Using Panel Data for Korean Renewable Energy Technology Firms," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    7. Orsatti, Gianluca & Pezzoni, Michele & Quatraro, Francesco, 2017. "Where Do Green Technologies Come From? Inventor Teams’ Recombinant Capabilities and the Creation of New Knowledge," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201711, University of Turin.
    8. Yu-Hong Ai & Di-Yun Peng & Huan-Huan Xiong, 2021. "Impact of Environmental Regulation Intensity on Green Technology Innovation: From the Perspective of Political and Business Connections," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    9. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    10. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    11. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    12. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    13. Massimiliano Mazzanti & Valeria Costantini & Susanna Mancinelli & Massimilano Corradini, 2011. "Environmental and Innovation Performance in a Dynamic Impure Public Good Framework," Working Papers 201117, University of Ferrara, Department of Economics.
    14. Degirmenci, Tunahan & Yavuz, Hakan, 2024. "Environmental taxes, R&D expenditures and renewable energy consumption in EU countries: Are fiscal instruments effective in the expansion of clean energy?," Energy, Elsevier, vol. 299(C).
    15. Giovanni Marin & Francesca Lotti, 2017. "Productivity effects of eco-innovations using data on eco-patents," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(1), pages 125-148.
    16. Bongsuk Sung & Myung-Bae Yeom & Hong-Gi Kim, 2017. "Eco-Efficiency of Government Policy and Exports in the Bioenergy Technology Market," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    17. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2022. "On the quality of emission reductions: observed effects of carbon pricing on investments, innovation, and operational shifts. A response to van den Bergh and Savin (2021)," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 733-758, November.
    18. David Popp & Jacquelyn Pless & Ivan Haščič & Nick Johnstone, 2020. "Innovation and Entrepreneurship in the Energy Sector," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 175-248, National Bureau of Economic Research, Inc.
    19. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    20. Valeria Costantini & Francesco Crespi, 2013. "Public policies for a sustainable energy sector: regulation, diversity and fostering of innovation," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 401-429, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:65:y:2014:i:c:p:2-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.