Influence of temperature on organic structure of biomass pyrolysis products
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2012.06.028
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiao, Ruirui & Chen, Xueli & Wang, Fuchen & Yu, Guangsuo, 2011. "The physicochemical properties of different biomass ashes at different ashing temperature," Renewable Energy, Elsevier, vol. 36(1), pages 244-249.
- Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
- Wang, Wenyan & Liu, Xuan & Zhang, Guangyi & Zhu, Xinyu & Shi, Bowen & Zhang, Jianling & Xu, Guangwen, 2022. "Decoupled combustion of alcohol extracted herb residues with blending wasted activated coke: Insight into in-situ NOx emission control by pyrolysis products," Applied Energy, Elsevier, vol. 323(C).
- Promdee, Kittiphop & Chanvidhwatanakit, Jirawat & Satitkune, Somruedee & Boonmee, Chakkrich & Kawichai, Thitipong & Jarernprasert, Sittipong & Vitidsant, Tharapong, 2017. "Characterization of carbon materials and differences from activated carbon particle (ACP) and coal briquettes product (CBP) derived from coconut shell via rotary kiln," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1175-1186.
- Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
- Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
- Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
- Zhang, Pengchao & Hu, Hongyun & Tang, Hua & Yang, Yuhan & Liu, Huan & Lu, Qiang & Li, Xian & Worasuwannarak, Nakorn & Yao, Hong, 2019. "In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples," Renewable Energy, Elsevier, vol. 139(C), pages 730-738.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Ábrego, J. & Atienza-Martínez, M. & Plou, F. & Arauzo, J., 2019. "Heat requirement for fixed bed pyrolysis of beechwood chips," Energy, Elsevier, vol. 178(C), pages 145-157.
- López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
- M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
- Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Chengheng & Liu, Hao & Lester, Edward & Wu, Tao, 2020. "In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends," Energy, Elsevier, vol. 199(C).
- Mouna Gmar & Hassine Bouafif & Besma Bouslimi & Flavia L. Braghiroli & Ahmed Koubaa, 2022. "Pyrolysis of Chromated Copper Arsenate-Treated Wood: Investigation of Temperature, Granulometry, Biochar Yield, and Metal Pathways," Energies, MDPI, vol. 15(14), pages 1-15, July.
- Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
- Yimin Deng & Renaud Ansart & Jan Baeyens & Huili Zhang, 2019. "Flue Gas Desulphurization in Circulating Fluidized Beds," Energies, MDPI, vol. 12(20), pages 1-19, October.
- Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
- Xu, Jie & Wang, Ju & Du, Chunhua & Li, Shuaidan & Liu, Xia, 2020. "Understanding fusibility characteristics and flow properties of the biomass and biomass-coal ash samples," Renewable Energy, Elsevier, vol. 147(P1), pages 1352-1357.
- Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
- Sakiewicz, Piotr & Piotrowski, Krzysztof & Kalisz, Sylwester, 2020. "Neural network prediction of parameters of biomass ashes, reused within the circular economy frame," Renewable Energy, Elsevier, vol. 162(C), pages 743-753.
- Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
- Collazo, Joaquín & Pazó, José Antonio & Granada, Enrique & Saavedra, Ángeles & Eguía, Pablo, 2012. "Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis," Energy, Elsevier, vol. 45(1), pages 746-752.
- Xing, Jiangkuan & Wang, Haiou & Luo, Kun & Wang, Shuai & Bai, Yun & Fan, Jianren, 2019. "Predictive single-step kinetic model of biomass devolatilization for CFD applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF)," Renewable Energy, Elsevier, vol. 136(C), pages 104-114.
- Dahou, T. & Defoort, F. & Khiari, B. & Labaki, M. & Dupont, C. & Jeguirim, M., 2021. "Role of inorganics on the biomass char gasification reactivity: A review involving reaction mechanisms and kinetics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
- Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
- Ortiz, Leandro Rodriguez & Torres, Erick & Zalazar, Daniela & Zhang, Huili & Rodriguez, Rosa & Mazza, Germán, 2020. "Influence of pyrolysis temperature and bio-waste composition on biochar characteristics," Renewable Energy, Elsevier, vol. 155(C), pages 837-847.
- Lupa, Christopher J. & Wylie, Steve R. & Shaw, Andrew & Al-Shamma'a, Ahmed & Sweetman, Andrew J. & Herbert, Ben M.J., 2013. "Gas evolution and syngas heating value from advanced thermal treatment of waste using microwave-induced plasma," Renewable Energy, Elsevier, vol. 50(C), pages 1065-1072.
More about this item
Keywords
Straw; Pyrolysis temperature; Semi-char; Tar; Functional group;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:136-141. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.