IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v43y2012icp149-156.html
   My bibliography  Save this article

Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications

Author

Listed:
  • Kanmani, S.S.
  • Ramachandran, K.

Abstract

TiO2/ZnO core/shell nanomaterials were synthesized in two steps involving preparation of core TiO2 nanoparticles by simple hydrolysis and growth of ZnO shell layers on core TiO2 nanoparticles by refluxing methods. Structural characterization by XRD confirmed the formation of anatase TiO2 and high crystalline wurtzite structured ZnO on the surface of TiO2, agreeing with Raman measurements. Here, a significant increase in the intensity of photoluminescence peak for ZnO-coated TiO2 than bare TiO2 infers the recombination of the photogenerated charge carriers. The current–voltage measurements of solar cell based on Eosin yellowish dye-sensitized TiO2 and TiO2/ZnO films showed an enhancement of open circuit voltage (Voc) from 0.278 to 0.412 V, when ZnO is added. This confirms its active role for the energy barrier leading to decrease in recombination losses.

Suggested Citation

  • Kanmani, S.S. & Ramachandran, K., 2012. "Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications," Renewable Energy, Elsevier, vol. 43(C), pages 149-156.
  • Handle: RePEc:eee:renene:v:43:y:2012:i:c:p:149-156
    DOI: 10.1016/j.renene.2011.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111006951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Senthil, T.S. & Muthukumarasamy, N. & Velauthapillai, Dhayalan & Agilan, S. & Thambidurai, M. & Balasundaraprabhu, R., 2011. "Natural dye (cyanidin 3-O-glucoside) sensitized nanocrystalline TiO2 solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte," Renewable Energy, Elsevier, vol. 36(9), pages 2484-2488.
    2. Liu, Zhifeng & Liu, Chengcheng & Ya, Jing & Lei, E., 2011. "Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells," Renewable Energy, Elsevier, vol. 36(4), pages 1177-1181.
    3. U. Bach & D. Lupo & P. Comte & J. E. Moser & F. Weissörtel & J. Salbeck & H. Spreitzer & M. Grätzel, 1998. "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature, Nature, vol. 395(6702), pages 583-585, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, En-Chin & Huang, Bing-Shun & Liu, Chao-Chang & Wey, Ming-Yen, 2015. "Photocatalytic conversion of simulated EDTA wastewater to hydrogen by pH-resistant Pt/TiO2–activated carbon photocatalysts," Renewable Energy, Elsevier, vol. 75(C), pages 266-271.
    2. Maleki, Javad & Eskandari, Mehdi & Fathi, Davood, 2024. "New design and optimization of half-tandem quantum dot solar cell: Over 30% power conversion efficiency using nanostructure oriented core-shell," Renewable Energy, Elsevier, vol. 222(C).
    3. Guai, Guan Hong & Song, Qun Liang & Lu, Zhi Song & Ng, Chee Mang & Li, Chang Ming, 2013. "Tailor and functionalize TiO2 compact layer by acid treatment for high performance dye-sensitized solar cell and its enhancement mechanism," Renewable Energy, Elsevier, vol. 51(C), pages 29-35.
    4. Boro, Bibha & Gogoi, B. & Rajbongshi, B.M. & Ramchiary, A., 2018. "Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2264-2270.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullah, M. & Kamarudin, S.K., 2017. "Titanium dioxide nanotubes (TNT) in energy and environmental applications: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 212-225.
    2. Gong, Jiawei & Liang, Jing & Sumathy, K., 2012. "Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5848-5860.
    3. Tharmakularasa Rajaramanan & Muthukumarasamy Natarajan & Punniamoorthy Ravirajan & Meena Senthilnanthanan & Dhayalan Velauthapillai, 2020. "Ruthenium (Ru) Doped Titanium Dioxide (P25) Electrode for Dye Sensitized Solar Cells," Energies, MDPI, vol. 13(7), pages 1-12, March.
    4. Liao, Yu-Te & Huang, Chao-Wei & Liao, Chi-Hung & Wu, Jeffery C.-S. & Wu, Kevin C.-W., 2012. "Synthesis of mesoporous titania thin films (MTTFs) with two different structures as photocatalysts for generating hydrogen from water splitting," Applied Energy, Elsevier, vol. 100(C), pages 75-80.
    5. Jung-Ho Yun & Lianzhou Wang & Rose Amal & Yun Hau Ng, 2016. "One-Dimensional TiO 2 Nanostructured Photoanodes: From Dye-Sensitised Solar Cells to Perovskite Solar Cells," Energies, MDPI, vol. 9(12), pages 1-23, December.
    6. Mehmood, Umer & Al-Ahmed, Amir & Al-Sulaiman, Fahad A. & Malik, M. Irfan & Shehzad, Farrukh & Khan, Anwar Ul Haq, 2017. "Effect of temperature on the photovoltaic performance and stability of solid-state dye-sensitized solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 946-959.
    7. Boro, Bibha & Gogoi, B. & Rajbongshi, B.M. & Ramchiary, A., 2018. "Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2264-2270.
    8. Liu, Shou-Heng & Syu, Han-Ren, 2012. "One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light," Applied Energy, Elsevier, vol. 100(C), pages 148-154.
    9. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Shariatinia, Zahra & Abedini, Ebrahim & Asghar, Shakiba & Imani, Shayesteh, 2023. "Recent developments of perovskites oxides and spinel materials as platinum-free counter electrodes for dye-sensitized solar cells: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Ran Ji & Zongbao Zhang & Yvonne J. Hofstetter & Robin Buschbeck & Christian Hänisch & Fabian Paulus & Yana Vaynzof, 2022. "Perovskite phase heterojunction solar cells," Nature Energy, Nature, vol. 7(12), pages 1170-1179, December.
    11. Al-Douri, Y. & Baaziz, H. & Charifi, Z. & Khenata, R. & Hashim, U. & Al-Jassim, M., 2012. "Further optical properties of CdX (X=S, Te) compounds under quantum dot diameter effect: Ab initio method," Renewable Energy, Elsevier, vol. 45(C), pages 232-236.
    12. Xue, Zhaosheng & Wang, Long & Liu, Wei & Liu, Bin, 2014. "Solid-state D102 dye sensitized/poly(3-hexylthiophene) hybrid solar cells on flexible Ti substrate," Renewable Energy, Elsevier, vol. 72(C), pages 22-28.
    13. Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
    14. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
    15. Shakeel Ahmad, Muhammad & Pandey, A.K. & Abd Rahim, Nasrudin, 2017. "Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 89-108.
    16. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
    18. Richhariya, Geetam & Kumar, Anil & Tekasakul, Perapong & Gupta, Bhupendra, 2017. "Natural dyes for dye sensitized solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 705-718.
    19. Ali, N. & Hussain, A. & Ahmed, R. & Wang, M.K. & Zhao, C. & Haq, B. Ul & Fu, Y.Q., 2016. "Advances in nanostructured thin film materials for solar cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 726-737.
    20. Angellina Ebenezer Anitha & Marius Dotter, 2023. "A Review on Liquid Electrolyte Stability Issues for Commercialization of Dye-Sensitized Solar Cells (DSSC)," Energies, MDPI, vol. 16(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:43:y:2012:i:c:p:149-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.