IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v37y2012i1p150-160.html
   My bibliography  Save this article

Nested ensemble NWP approach for wind energy assessment

Author

Listed:
  • Al-Yahyai, Sultan
  • Charabi, Yassine
  • Al-Badi, Abdullah
  • Gastli, Adel

Abstract

High quality wind data is needed to conduct wind resource assessment. Numerical Weather Prediction (NWP) models were recently used to provide the desired data. The current uncertainty sources in NWP models introduce uncertainties in wind resource assessment. More accurate NWP wind data will lead to more accurate resource assessment, wind turbine micrositing and energy short-term forecasting. Using one single NWP model may lead to undesired results compared to the huge investment in wind energy projects. New capabilities and strategies to quantify and reduce the uncertainty of wind data from NWP models are required. This paper proposed the use of nested ensemble NWP model for the wind resource assessment. This approach will provide information about the uncertainty of the NWP models and provide probabilistic information for researchers compared to the current use of single NWP model. A case study of the proposed approach is presented with four ensemble members using 7 km resolution over Oman. Verification results shows that the NWP ensemble mean performs better in average than individual members.

Suggested Citation

  • Al-Yahyai, Sultan & Charabi, Yassine & Al-Badi, Abdullah & Gastli, Adel, 2012. "Nested ensemble NWP approach for wind energy assessment," Renewable Energy, Elsevier, vol. 37(1), pages 150-160.
  • Handle: RePEc:eee:renene:v:37:y:2012:i:1:p:150-160
    DOI: 10.1016/j.renene.2011.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111003065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel, 2010. "Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3192-3198, December.
    2. AL-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel & Al-Alawi, Saleh, 2010. "Assessment of wind energy potential locations in Oman using data from existing weather stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1428-1436, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Haipeng & Wang, Jianzhou & Qian, Yuansheng & Li, Qiwei, 2024. "Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM," Energy, Elsevier, vol. 294(C).
    2. Zhang, Fei & Li, Peng-Cheng & Gao, Lu & Liu, Yong-Qian & Ren, Xiao-Ying, 2021. "Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting," Renewable Energy, Elsevier, vol. 169(C), pages 129-143.
    3. Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel & Al-Badi, Abdullah, 2012. "Wind farm land suitability indexing using multi-criteria analysis," Renewable Energy, Elsevier, vol. 44(C), pages 80-87.
    4. Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
    5. Xsitaaz T. Chadee & Naresh R. Seegobin & Ricardo M. Clarke, 2017. "Optimizing the Weather Research and Forecasting (WRF) Model for Mapping the Near-Surface Wind Resources over the Southernmost Caribbean Islands of Trinidad and Tobago," Energies, MDPI, vol. 10(7), pages 1-23, July.
    6. Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
    7. Al-Yahyai, Sultan & Charabi, Yassine, 2015. "Assessment of large-scale wind energy potential in the emerging city of Duqm (Oman)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 438-447.
    8. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    9. Nor, Khalid Mohamed & Shaaban, Mohamed & Abdul Rahman, Hasimah, 2014. "Feasibility assessment of wind energy resources in Malaysia based on NWP models," Renewable Energy, Elsevier, vol. 62(C), pages 147-154.
    10. Zhilong Wang & Chen Wang & Jie Wu, 2016. "Wind Energy Potential Assessment and Forecasting Research Based on the Data Pre-Processing Technique and Swarm Intelligent Optimization Algorithms," Sustainability, MDPI, vol. 8(11), pages 1-32, November.
    11. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    12. Amer Al-Hinai & Yassine Charabi & Seyed H. Aghay Kaboli, 2021. "Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    13. Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
    14. Saira Al-Zadjali & Ahmed Al Maashri & Amer Al-Hinai & Sultan Al-Yahyai & Mostafa Bakhtvar, 2019. "An Accurate, Light-Weight Wind Speed Predictor for Renewable Energy Management Systems," Energies, MDPI, vol. 12(22), pages 1-20, November.
    15. He, J.Y. & Chan, P.W. & Li, Q.S. & Tong, H.W., 2023. "Mapping future offshore wind resources in the South China Sea under climate change by regional climate modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Soukissian, Takvor H. & Papadopoulos, Anastasios, 2015. "Effects of different wind data sources in offshore wind power assessment," Renewable Energy, Elsevier, vol. 77(C), pages 101-114.
    17. Charabi, Yassine & Gastli, Adel, 2013. "Integration of temperature and dust effects in siting large PV power plant in hot arid area," Renewable Energy, Elsevier, vol. 57(C), pages 635-644.
    18. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2019. "A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction," Energies, MDPI, vol. 12(2), pages 1-42, January.
    19. Hanslian, David & Hošek, Jiří, 2015. "Combining the VAS 3D interpolation method and Wind Atlas methodology to produce a high-resolution wind resource map for the Czech Republic," Renewable Energy, Elsevier, vol. 77(C), pages 291-299.
    20. Omrani, Hiba & Drobinski, Philippe & Arsouze, Thomas & Bastin, Sophie & Lebeaupin-Brossier, Cindy & Mailler, Sylvain, 2017. "Spatial and temporal variability of wind energy resource and production over the North Western Mediterranean Sea: Sensitivity to air-sea interactions," Renewable Energy, Elsevier, vol. 101(C), pages 680-689.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Badi, A.H. & Malik, A. & Gastli, A., 2011. "Sustainable energy usage in Oman—Opportunities and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3780-3788.
    2. Amer Al-Hinai & Yassine Charabi & Seyed H. Aghay Kaboli, 2021. "Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    3. Al-Hadhrami, L.M., 2013. "Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 305-314.
    4. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    5. Nor, Khalid Mohamed & Shaaban, Mohamed & Abdul Rahman, Hasimah, 2014. "Feasibility assessment of wind energy resources in Malaysia based on NWP models," Renewable Energy, Elsevier, vol. 62(C), pages 147-154.
    6. Abdmouleh, Zeineb & Alammari, Rashid A.M. & Gastli, Adel, 2015. "Recommendations on renewable energy policies for the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1181-1191.
    7. Tayeb Brahimi, 2019. "Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia," Energies, MDPI, vol. 12(24), pages 1-16, December.
    8. Bukala, Jakub & Damaziak, Krzysztof & Karimi, Hamid Reza & Kroszczynski, Krzysztof & Krzeszowiec, Marcin & Malachowski, Jerzy, 2015. "Modern small wind turbine design solutions comparison in terms of estimated cost to energy output ratio," Renewable Energy, Elsevier, vol. 83(C), pages 1166-1173.
    9. Rabbani, R. & Zeeshan, M., 2020. "Exploring the suitability of MERRA-2 reanalysis data for wind energy estimation, analysis of wind characteristics and energy potential assessment for selected sites in Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 1240-1251.
    10. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    11. Ping Jiang & Zeng Wang & Kequan Zhang & Wendong Yang, 2017. "An Innovative Hybrid Model Based on Data Pre-Processing and Modified Optimization Algorithm and Its Application in Wind Speed Forecasting," Energies, MDPI, vol. 10(7), pages 1-29, July.
    12. Omrani, Hiba & Drobinski, Philippe & Arsouze, Thomas & Bastin, Sophie & Lebeaupin-Brossier, Cindy & Mailler, Sylvain, 2017. "Spatial and temporal variability of wind energy resource and production over the North Western Mediterranean Sea: Sensitivity to air-sea interactions," Renewable Energy, Elsevier, vol. 101(C), pages 680-689.
    13. Dong, Cong & Huang, Guohe (Gordon) & Cheng, Guanhui, 2021. "Offshore wind can power Canada," Energy, Elsevier, vol. 236(C).
    14. Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhen, Zhao & Jia, Mengshuo & Li, Zheng & Tang, Haiyan, 2022. "Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness," Applied Energy, Elsevier, vol. 313(C).
    15. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    16. Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
    17. Samet, Haidar & Marzbani, Fatemeh, 2014. "Quantizing the deterministic nonlinearity in wind speed time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1143-1154.
    18. Rehman, Shafiqur, 2014. "Tower distortion and scatter factors of co-located wind speed sensors and turbulence intensity behavior," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 20-29.
    19. Hereher, Mohamed & El Kenawy, Ahmed M., 2020. "Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach," Renewable Energy, Elsevier, vol. 161(C), pages 662-675.
    20. Zhao, Pan & Wang, Jiangfeng & Xia, Junrong & Dai, Yiping & Sheng, Yingxin & Yue, Jie, 2012. "Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China," Renewable Energy, Elsevier, vol. 43(C), pages 234-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:37:y:2012:i:1:p:150-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.