IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i7p1455-1468.html
   My bibliography  Save this article

Hydrodynamic impact of a tidal barrage in the Severn Estuary, UK

Author

Listed:
  • Xia, Junqiang
  • Falconer, Roger A.
  • Lin, Binliang

Abstract

The Severn Estuary has a spring tidal range approaching 14m, which is among the highest tides in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be generated. The aim of the current study is to investigate the impact of constructing a tidal barrage on the hydrodynamic processes in the Severn Estuary using a numerical model. A two-dimensional hydrodynamic model based on an unstructured triangular mesh has been used in this study. The model employs a TVD finite volume method to solve the 2D shallow water equations, with the numerical scheme being second-order accurate in both time and space. The model has been calibrated by comparing model predictions with observed tidal levels and currents at different sites, for typical spring and neap tides, and it has also been verified using tidal level time series at four tide gauging stations measured in 2003. In order to predict the hydrodynamic processes with a barrage, the model domain was divided into two subdomains: one each side of the barrage. Details were given of the method used for representing the various hydraulic structures, including the sluices and turbines, along the proposed Cardiff-Weston barrage. The impact of constructing the barrage on the water levels and velocities was then investigated using this model. Model-predicted hydrodynamic parameters, without and with the barrage, were analysed in detail. Model predictions indicated that with the barrage the mean power output could reach 2.0GW with up to 25GWh units of electricity being generated over a typical mean spring tidal cycle. At some cross-sections, the maximum discharges were predicted to decrease by 30–50%, as compared with the corresponding discharges predicted without the barrage. The model also predicted that with the barrage, the maximum water levels upstream of the barrage would decrease by 0.5–1.5m, and with the peak tidal currents also being reduced considerably. For different operating modes, complex velocity fields were predicted to occur in the vicinity of the barrage.

Suggested Citation

  • Xia, Junqiang & Falconer, Roger A. & Lin, Binliang, 2010. "Hydrodynamic impact of a tidal barrage in the Severn Estuary, UK," Renewable Energy, Elsevier, vol. 35(7), pages 1455-1468.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:7:p:1455-1468
    DOI: 10.1016/j.renene.2009.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109005588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    2. Mackinnon, Kathryn & Smith, Helen C.M. & Moore, Francesca & van der Weijde, Adriaan H. & Lazakis, Iraklis, 2018. "Environmental interactions of tidal lagoons: A comparison of industry perspectives," Renewable Energy, Elsevier, vol. 119(C), pages 309-319.
    3. Fairley, I. & Ahmadian, R. & Falconer, R.A. & Willis, M.R. & Masters, I., 2014. "The effects of a Severn Barrage on wave conditions in the Bristol Channel," Renewable Energy, Elsevier, vol. 68(C), pages 428-442.
    4. Anicic, Obrad & Jovic, Srdjan, 2016. "Adaptive neuro-fuzzy approach for ducted tidal turbine performance estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1111-1116.
    5. Zhou, Juntao & Falconer, Roger A. & Lin, Binliang, 2014. "Refinements to the EFDC model for predicting the hydro-environmental impacts of a barrage across the Severn Estuary," Renewable Energy, Elsevier, vol. 62(C), pages 490-505.
    6. Jingjing Xue & Reza Ahmadian & Roger A. Falconer, 2019. "Optimising the Operation of Tidal Range Schemes," Energies, MDPI, vol. 12(15), pages 1-23, July.
    7. Angeloudis, Athanasios & Falconer, Roger A. & Bray, Samuel & Ahmadian, Reza, 2016. "Representation and operation of tidal energy impoundments in a coastal hydrodynamic model," Renewable Energy, Elsevier, vol. 99(C), pages 1103-1115.
    8. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.
    9. Garcia-Oliva, Miriam & Djordjević, Slobodan & Tabor, Gavin R., 2017. "The influence of channel geometry on tidal energy extraction in estuaries," Renewable Energy, Elsevier, vol. 101(C), pages 514-525.
    10. Guo, Bin & Ahmadian, Reza & Falconer, Roger A., 2021. "Refined hydro-environmental modelling for tidal energy generation: West Somerset Lagoon case study," Renewable Energy, Elsevier, vol. 179(C), pages 2104-2123.
    11. Zhou, Juntao & Pan, Shunqi & Falconer, Roger A., 2014. "Optimization modelling of the impacts of a Severn Barrage for a two-way generation scheme using a Continental Shelf model," Renewable Energy, Elsevier, vol. 72(C), pages 415-427.
    12. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    13. Park, Young Hyun, 2017. "Analysis of characteristics of Dynamic Tidal Power on the west coast of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 461-474.
    14. Pappas, Konstantinos & Mackie, Lucas & Zilakos, Ilias & van der Weijde, Adriaan Hendrik & Angeloudis, Athanasios, 2023. "Sensitivity of tidal range assessments to harmonic constituents and analysis timeframe," Renewable Energy, Elsevier, vol. 205(C), pages 125-141.
    15. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    16. Angeloudis, Athanasios & Ahmadian, Reza & Falconer, Roger A. & Bockelmann-Evans, Bettina, 2016. "Numerical model simulations for optimisation of tidal lagoon schemes," Applied Energy, Elsevier, vol. 165(C), pages 522-536.
    17. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    18. Vanesa Magar & Victor M. Godínez & Markus S. Gross & Manuel López-Mariscal & Anahí Bermúdez-Romero & Julio Candela & Luis Zamudio, 2020. "In-Stream Energy by Tidal and Wind-Driven Currents: An Analysis for the Gulf of California," Energies, MDPI, vol. 13(5), pages 1-16, March.
    19. Angeloudis, Athanasios & Falconer, Roger A., 2017. "Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics," Renewable Energy, Elsevier, vol. 114(PA), pages 337-351.
    20. Harcourt, Freddie & Angeloudis, Athanasios & Piggott, Matthew D., 2019. "Utilising the flexible generation potential of tidal range power plants to optimise economic value," Applied Energy, Elsevier, vol. 237(C), pages 873-884.
    21. Kim, J.W. & Woo, S.-B., 2023. "A numerical approach to the treatment of submerged water exchange processes through the sluice gates of a tidal power plant," Renewable Energy, Elsevier, vol. 219(P1).
    22. Xue, Jingjing & Ahmadian, Reza & Jones, Owen & Falconer, Roger A., 2021. "Design of tidal range energy generation schemes using a Genetic Algorithm model," Applied Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:7:p:1455-1468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.