IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v179y2021icp2104-2123.html
   My bibliography  Save this article

Refined hydro-environmental modelling for tidal energy generation: West Somerset Lagoon case study

Author

Listed:
  • Guo, Bin
  • Ahmadian, Reza
  • Falconer, Roger A.

Abstract

An accurate assessment of the hydro-environmental impacts of tidal range energy schemes, where the performance of the scheme has an impact on the marine environment and ecology, is crucial in optimising the design and development of such schemes. A proposal for a new coastally-attached impoundment, namely West Somerset Lagoon, has been investigated in this research and the numerical model TELEMAC-2D has been refined to model theimpacts of this scheme on the Bristol Channel and Severn Estuary. Domain decomposition was applied and full momentum conservation between the subdomains was included in the model by implementing momentum source terms at the turbine locations. The results have confirmed the importance of including full momentum conservation in modelling the effects of turbo-machinery in tidal lagoons. It was found that the operation of the scheme decreased the high water level slightly in the Bristol Channel and Severn Estuary, while there was a decrease in the low intertidal areas. The maximum velocity and bed shear stress were predicted to increase in the inner Bristol Channel, while they decreased noticeably across most of the interior of the lagoon, away from the turbine wakes. Furthermore, the operation of the lagoon significantly improved the water renewal in the region.

Suggested Citation

  • Guo, Bin & Ahmadian, Reza & Falconer, Roger A., 2021. "Refined hydro-environmental modelling for tidal energy generation: West Somerset Lagoon case study," Renewable Energy, Elsevier, vol. 179(C), pages 2104-2123.
  • Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:2104-2123
    DOI: 10.1016/j.renene.2021.08.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121011940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.08.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jingjing Xue & Reza Ahmadian & Roger A. Falconer, 2019. "Optimising the Operation of Tidal Range Schemes," Energies, MDPI, vol. 12(15), pages 1-23, July.
    2. Guillou, Nicolas & Thiébot, Jérôme & Chapalain, Georges, 2019. "Turbines’ effects on water renewal within a marine tidal stream energy site," Energy, Elsevier, vol. 189(C).
    3. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Performance prediction of a prototype tidal power turbine by using a suitable numerical model," Renewable Energy, Elsevier, vol. 113(C), pages 293-302.
    4. Angeloudis, Athanasios & Falconer, Roger A. & Bray, Samuel & Ahmadian, Reza, 2016. "Representation and operation of tidal energy impoundments in a coastal hydrodynamic model," Renewable Energy, Elsevier, vol. 99(C), pages 1103-1115.
    5. Aggidis, G.A. & Feather, O., 2012. "Tidal range turbines and generation on the Solway Firth," Renewable Energy, Elsevier, vol. 43(C), pages 9-17.
    6. Waters, Shaun & Aggidis, George, 2016. "Tidal range technologies and state of the art in review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 514-529.
    7. Mackinnon, Kathryn & Smith, Helen C.M. & Moore, Francesca & van der Weijde, Adriaan H. & Lazakis, Iraklis, 2018. "Environmental interactions of tidal lagoons: A comparison of industry perspectives," Renewable Energy, Elsevier, vol. 119(C), pages 309-319.
    8. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    9. Angeloudis, Athanasios & Falconer, Roger A., 2017. "Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics," Renewable Energy, Elsevier, vol. 114(PA), pages 337-351.
    10. Waters, Shaun & Aggidis, George, 2016. "A World First: Swansea Bay Tidal lagoon in review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 916-921.
    11. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang, 2010. "Impact of different operating modes for a Severn Barrage on the tidal power and flood inundation in the Severn Estuary, UK," Applied Energy, Elsevier, vol. 87(7), pages 2374-2391, July.
    12. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang, 2010. "Hydrodynamic impact of a tidal barrage in the Severn Estuary, UK," Renewable Energy, Elsevier, vol. 35(7), pages 1455-1468.
    13. Neill, Simon P. & Litt, Emmer J. & Couch, Scott J. & Davies, Alan G., 2009. "The impact of tidal stream turbines on large-scale sediment dynamics," Renewable Energy, Elsevier, vol. 34(12), pages 2803-2812.
    14. Angeloudis, Athanasios & Kramer, Stephan C. & Hawkins, Noah & Piggott, Matthew D., 2020. "On the potential of linked-basin tidal power plants: An operational and coastal modelling assessment," Renewable Energy, Elsevier, vol. 155(C), pages 876-888.
    15. Zhou, Juntao & Pan, Shunqi & Falconer, Roger A., 2014. "Optimization modelling of the impacts of a Severn Barrage for a two-way generation scheme using a Continental Shelf model," Renewable Energy, Elsevier, vol. 72(C), pages 415-427.
    16. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J. & Ward, Sophie L., 2015. "Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas," Applied Energy, Elsevier, vol. 147(C), pages 510-522.
    17. Ahmadian, Reza & Falconer, Roger & Bockelmann-Evans, Bettina, 2012. "Far-field modelling of the hydro-environmental impact of tidal stream turbines," Renewable Energy, Elsevier, vol. 38(1), pages 107-116.
    18. Xue, Jingjing & Ahmadian, Reza & Jones, Owen & Falconer, Roger A., 2021. "Design of tidal range energy generation schemes using a Genetic Algorithm model," Applied Energy, Elsevier, vol. 286(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, J.W. & Woo, S.-B., 2023. "A numerical approach to the treatment of submerged water exchange processes through the sluice gates of a tidal power plant," Renewable Energy, Elsevier, vol. 219(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    2. Xue, Jingjing & Ahmadian, Reza & Jones, Owen & Falconer, Roger A., 2021. "Design of tidal range energy generation schemes using a Genetic Algorithm model," Applied Energy, Elsevier, vol. 286(C).
    3. Harcourt, Freddie & Angeloudis, Athanasios & Piggott, Matthew D., 2019. "Utilising the flexible generation potential of tidal range power plants to optimise economic value," Applied Energy, Elsevier, vol. 237(C), pages 873-884.
    4. Jingjing Xue & Reza Ahmadian & Roger A. Falconer, 2019. "Optimising the Operation of Tidal Range Schemes," Energies, MDPI, vol. 12(15), pages 1-23, July.
    5. Moreira, Túlio Marcondes & de Faria, Jackson Geraldo & Vaz-de-Melo, Pedro O.S. & Medeiros-Ribeiro, Gilberto, 2023. "Development and validation of an AI-Driven model for the La Rance tidal barrage: A generalisable case study," Applied Energy, Elsevier, vol. 332(C).
    6. Angeloudis, Athanasios & Falconer, Roger A., 2017. "Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics," Renewable Energy, Elsevier, vol. 114(PA), pages 337-351.
    7. Pappas, Konstantinos & Mackie, Lucas & Zilakos, Ilias & van der Weijde, Adriaan Hendrik & Angeloudis, Athanasios, 2023. "Sensitivity of tidal range assessments to harmonic constituents and analysis timeframe," Renewable Energy, Elsevier, vol. 205(C), pages 125-141.
    8. Angeloudis, Athanasios & Kramer, Stephan C. & Hawkins, Noah & Piggott, Matthew D., 2020. "On the potential of linked-basin tidal power plants: An operational and coastal modelling assessment," Renewable Energy, Elsevier, vol. 155(C), pages 876-888.
    9. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    10. Mejia-Olivares, Carlos Joel & Haigh, Ivan D. & Angeloudis, Athanasios & Lewis, Matt J. & Neill, Simon P., 2020. "Tidal range energy resource assessment of the Gulf of California, Mexico," Renewable Energy, Elsevier, vol. 155(C), pages 469-483.
    11. Xue, Jingjing & Ahmadian, Reza & Jones, Owen, 2020. "Genetic Algorithm in Tidal Range Schemes’ Optimisation," Energy, Elsevier, vol. 200(C).
    12. Martí Barclay, Vicky & Neill, Simon P. & Angeloudis, Athanasios, 2023. "Tidal range resource of the Patagonian shelf," Renewable Energy, Elsevier, vol. 209(C), pages 85-96.
    13. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    14. Angeloudis, Athanasios & Falconer, Roger A. & Bray, Samuel & Ahmadian, Reza, 2016. "Representation and operation of tidal energy impoundments in a coastal hydrodynamic model," Renewable Energy, Elsevier, vol. 99(C), pages 1103-1115.
    15. Lewis, M.J. & Angeloudis, A. & Robins, P.E. & Evans, P.S. & Neill, S.P., 2017. "Influence of storm surge on tidal range energy," Energy, Elsevier, vol. 122(C), pages 25-36.
    16. Fairley, I. & Ahmadian, R. & Falconer, R.A. & Willis, M.R. & Masters, I., 2014. "The effects of a Severn Barrage on wave conditions in the Bristol Channel," Renewable Energy, Elsevier, vol. 68(C), pages 428-442.
    17. Hanousek, Nicolas & Ahmadian, Reza & Lesurf, Emma, 2023. "Providing distributed electrical generation through retrofitting disused docks as tidal range energy schemes," Renewable Energy, Elsevier, vol. 217(C).
    18. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    19. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:2104-2123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.