IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i4p797-806.html
   My bibliography  Save this article

An experimental and numerical study of the gap effect on wind load on heliostat

Author

Listed:
  • Wu, Zhiyong
  • Gong, Bo
  • Wang, Zhifeng
  • Li, Zhengnong
  • Zang, Chuncheng

Abstract

The main handicap of the concentrating solar power technology is still the higher cost compared with the conventional coal power plant. Heliostat arrays cause about 40% of the costs of central receiver power plants. The cost reduction of heliostats is of crucial importance to central receiver power plants. The reduction of wind load on heliostats will decrease the structural requirement for heliostats, and then cut the cost of heliostats. In this paper, different gap sizes (0–40mm) between the facets of the heliostats were studied experimentally and numerically. Both of the results showed that the wind load increases slightly with the increase of gap size (0–40mm). The result of the numerical simulation shows the flow pattern through the gap resembles a jet flow which does not affect the static pressure on the windward surface but does decrease the static pressure on the leeward surface of the facets. Consequently it increases the total drag force on the heliostat. However, the absolute increment of the wind load is very small compared with the overall wind load on the heliostat structure. It is not necessary to take account of the gap size effects on the wind load during the design process of heliostat.

Suggested Citation

  • Wu, Zhiyong & Gong, Bo & Wang, Zhifeng & Li, Zhengnong & Zang, Chuncheng, 2010. "An experimental and numerical study of the gap effect on wind load on heliostat," Renewable Energy, Elsevier, vol. 35(4), pages 797-806.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:4:p:797-806
    DOI: 10.1016/j.renene.2009.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109004042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    2. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    3. Mammar, Mohamed & Djouimaa, Sihem & Gärtner, Ulrich & Hamidat, Abderrahmane, 2018. "Wind loads on heliostats of various column heights: An experimental study," Energy, Elsevier, vol. 143(C), pages 867-880.
    4. Zang, Chuncheng & Wang, Zhifeng & Liu, Hong & Ruan, Yi, 2012. "Experimental wind load model for heliostats," Applied Energy, Elsevier, vol. 93(C), pages 444-448.
    5. Choi, Seok Min & Park, Chang-Dae & Cho, Sung-Hoon & Lim, Byung-Ju, 2022. "Effects of wind loads on the solar panel array of a floating photovoltaic system – Experimental study and economic analysis," Energy, Elsevier, vol. 256(C).
    6. Clifford K. Ho, 2014. "Computational fluid dynamics for concentrating solar power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 290-300, May.
    7. Gupta, M.K. & Kaushik, S.C. & Ranjan, K.R. & Panwar, N.L. & Reddy, V. Siva & Tyagi, S.K., 2015. "Thermodynamic performance evaluation of solar and other thermal power generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 567-582.
    8. Bendjebbas, H. & Abdellah-ElHadj, A. & Abbas, M., 2016. "Full-scale, wind tunnel and CFD analysis methods of wind loads on heliostats: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 452-472.
    9. Abiola-Ogedengbe, Ayodeji & Hangan, Horia & Siddiqui, Kamran, 2015. "Experimental investigation of wind effects on a standalone photovoltaic (PV) module," Renewable Energy, Elsevier, vol. 78(C), pages 657-665.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:4:p:797-806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.