IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v16y1999i1p1106-1109.html
   My bibliography  Save this article

An equilibrium model for biomass gasification processes

Author

Listed:
  • Ruggiero, M.
  • Manfrida, G.

Abstract

Energy conversion systems based on biomass utilisation are particularly interesting because of their contribution to the limitation of global CO2 emissions; within the possible methods for energy-based biomass utilisation, thermal gasification appears as the most mature technology. In the first design stage, the designer of these systems, or the user looking for performance predictions under different operating conditions, has advantages of running thermochemical simulations allowing a prediction of the syngas composition and calorific value. The equilibrium model described in this paper is very simple, but it considers chemical species typically encountered by biomass gasifiers, and was tested against published experimental data.

Suggested Citation

  • Ruggiero, M. & Manfrida, G., 1999. "An equilibrium model for biomass gasification processes," Renewable Energy, Elsevier, vol. 16(1), pages 1106-1109.
  • Handle: RePEc:eee:renene:v:16:y:1999:i:1:p:1106-1109
    DOI: 10.1016/S0960-1481(98)00429-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148198004297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(98)00429-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Granada, E. & Eguía, P. & Vilan, J.A. & Comesaña, J.A. & Comesaña, R., 2012. "FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process," Renewable Energy, Elsevier, vol. 41(C), pages 416-421.
    2. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    3. Jarungthammachote, S. & Dutta, A., 2007. "Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier," Energy, Elsevier, vol. 32(9), pages 1660-1669.
    4. Roy, Prokash C. & Datta, Amitava & Chakraborty, Niladri, 2010. "Assessment of cow dung as a supplementary fuel in a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 35(2), pages 379-386.
    5. Mohd Zeeshan & Rohan R. Pande & Purnanand V. Bhale, 2024. "A modeling study for the gasification of refuse-derived fuel as an alternative to waste disposal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23985-24008, September.
    6. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2010. "Review and analysis of biomass gasification models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2841-2851, December.
    7. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer–Tropsch synthesis," Energy, Elsevier, vol. 35(6), pages 2557-2579.
    8. Lu, Ding & Yoshikawa, Kunio & Ismail, Tamer M. & Abd El-Salam, M., 2018. "Assessment of the carbonized woody briquette gasification in an updraft fixed bed gasifier using the Euler-Euler model," Applied Energy, Elsevier, vol. 220(C), pages 70-86.
    9. Pio, D.T. & Tarelho, L.A.C., 2020. "Empirical and chemical equilibrium modelling for prediction of biomass gasification products in bubbling fluidized beds," Energy, Elsevier, vol. 202(C).
    10. N. Florin & A. Harris, 2007. "Hydrogen production from biomass," Environment Systems and Decisions, Springer, vol. 27(1), pages 207-215, March.
    11. Pellegrini, Luiz Felipe & de Oliveira, Silvio, 2007. "Exergy analysis of sugarcane bagasse gasification," Energy, Elsevier, vol. 32(4), pages 314-327.
    12. Ahmed, Tigabwa Y. & Ahmad, Murni M. & Yusup, Suzana & Inayat, Abrar & Khan, Zakir, 2012. "Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2304-2315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:16:y:1999:i:1:p:1106-1109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.