IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i5p1241-1244.html
   My bibliography  Save this article

Sustainable energy system – A case study from Chile

Author

Listed:
  • Gebremedhin, A.
  • Karlsson, B.
  • Björnfot, K.

Abstract

This paper presents some of the results of a power system analysis for Chile. The two major Chilean electric systems are roughly modelled and optimized using a linear programming method with the option to integrate renewable energy sources like wind power, solar power, mini-hydropower and biomass-fired power and also “municipal waste”. A total of four different scenarios are outlined: reference system, new production units, gas and coal price variations and a policy measure to encourage power production based on renewable energy. The objective of the scenarios was to illustrate under what conditions integration of the different energy sources in the existing production system is possible. The study shows that even under current conditions, mini-hydro and waste to energy plants are economically viable. Wind power might be interesting alternatives if policy instrument measures are applied. On the other hand, it is hard for the other energy sources to enter the system even when higher price levels of gas and coal are applied. The system is more sensitive to coal price increases than to gas price increases and this mainly encourages CO2 emission reduction.

Suggested Citation

  • Gebremedhin, A. & Karlsson, B. & Björnfot, K., 2009. "Sustainable energy system – A case study from Chile," Renewable Energy, Elsevier, vol. 34(5), pages 1241-1244.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:5:p:1241-1244
    DOI: 10.1016/j.renene.2008.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810800356X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gebremedhin, Alemayehu & Carlson, Annelie, 2002. "Optimisation of merged district-heating systems--benefits of co-operation in the light of externality costs," Applied Energy, Elsevier, vol. 73(3-4), pages 223-235, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gebremedhin, Alemayehu & De Oliveira Granheim, Jarle, 2012. "Is there a space for additional renewable energy in the Norwegian power system? Potential for reduced global emission?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1611-1615.
    2. Nautiyal, Himanshu & Singal, S.K. & Varun & Sharma, Aashish, 2011. "Small hydropower for sustainable energy development in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2021-2027, May.
    3. Amiri, Shahnaz & Weinberger, Gottfried, 2018. "Increased cogeneration of renewable electricity through energy cooperation in a Swedish district heating system - A case study," Renewable Energy, Elsevier, vol. 116(PA), pages 866-877.
    4. Gebremedhin, Alemayehu, 2012. "Introducing District Heating in a Norwegian town – Potential for reduced Local and Global Emissions," Applied Energy, Elsevier, vol. 95(C), pages 300-304.
    5. Mundaca T., Luis, 2013. "Climate change and energy policy in Chile: Up in smoke?," Energy Policy, Elsevier, vol. 52(C), pages 235-248.
    6. Inna Lazanyuk & Svetlana Ratner & Svetlana Revinova & Konstantin Gomonov & Swati Modi, 2023. "Diffusion of Renewable Microgeneration on the Side of End-User: Multiple Case Study," Energies, MDPI, vol. 16(6), pages 1-22, March.
    7. Cosentino, Valentina & Favuzza, Salvatore & Graditi, Giorgio & Ippolito, Mariano Giuseppe & Massaro, Fabio & Riva Sanseverino, Eleonora & Zizzo, Gaetano, 2012. "Smart renewable generation for an islanded system. Technical and economic issues of future scenarios," Energy, Elsevier, vol. 39(1), pages 196-204.
    8. Román-Figueroa, Celián & Montenegro, Nicole & Paneque, Manuel, 2017. "Bioenergy potential from crop residue biomass in Araucania Region of Chile," Renewable Energy, Elsevier, vol. 102(PA), pages 170-177.
    9. Rodríguez-Monroy, Carlos & Mármol-Acitores, Gloria & Nilsson-Cifuentes, Gabriel, 2018. "Electricity generation in Chile using non-conventional renewable energy sources – A focus on biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 937-945.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    2. Chow, T. T. & Chan, Apple L. S. & Song, C. L., 2004. "Building-mix optimization in district cooling system implementation," Applied Energy, Elsevier, vol. 77(1), pages 1-13, January.
    3. Gronkvist, Stefan & Sandberg, Peter, 2006. "Driving forces and obstacles with regard to co-operation between municipal energy companies and process industries in Sweden," Energy Policy, Elsevier, vol. 34(13), pages 1508-1519, September.
    4. Lund, H. & Siupsinskas, G. & Martinaitis, V., 2005. "Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania," Applied Energy, Elsevier, vol. 82(3), pages 214-227, November.
    5. Henning, Dag & Amiri, Shahnaz & Holmgren, Kristina, 2006. "Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1224-1247, December.
    6. Zvingilaite, Erika, 2011. "Human health-related externalities in energy system modelling the case of the Danish heat and power sector," Applied Energy, Elsevier, vol. 88(2), pages 535-544, February.
    7. Andersen, Anders N. & Østergaard, Poul Alberg, 2020. "Support schemes adapting district energy combined heat and power for the role as a flexibility provider in renewable energy systems," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:5:p:1241-1244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.