IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v34y2006i13p1508-1519.html
   My bibliography  Save this article

Driving forces and obstacles with regard to co-operation between municipal energy companies and process industries in Sweden

Author

Listed:
  • Gronkvist, Stefan
  • Sandberg, Peter

Abstract

No abstract is available for this item.

Suggested Citation

  • Gronkvist, Stefan & Sandberg, Peter, 2006. "Driving forces and obstacles with regard to co-operation between municipal energy companies and process industries in Sweden," Energy Policy, Elsevier, vol. 34(13), pages 1508-1519, September.
  • Handle: RePEc:eee:enepol:v:34:y:2006:i:13:p:1508-1519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(04)00328-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gebremedhin, Alemayehu & Carlson, Annelie, 2002. "Optimisation of merged district-heating systems--benefits of co-operation in the light of externality costs," Applied Energy, Elsevier, vol. 73(3-4), pages 223-235, November.
    2. Grohnheit, Poul Erik & Gram Mortensen, Bent Ole, 2003. "Competition in the market for space heating. District heating as the infrastructure for competition among fuels and technologies," Energy Policy, Elsevier, vol. 31(9), pages 817-826, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jinda & Sun, Chunhua & Qi, Chengying & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2021. "Promoting the performance of district heating from waste heat recovery in China: A general solving framework based on the two-stage branch evaluation method," Energy, Elsevier, vol. 220(C).
    2. Broberg, Sarah & Backlund, Sandra & Karlsson, Magnus & Thollander, Patrik, 2012. "Industrial excess heat deliveries to Swedish district heating networks: Drop it like it's hot," Energy Policy, Elsevier, vol. 51(C), pages 332-339.
    3. Svensson, Inger-Lise & Jönsson, Johanna & Berntsson, Thore & Moshfegh, Bahram, 2008. "Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden--Part 1: Methodology," Energy Policy, Elsevier, vol. 36(11), pages 4178-4185, November.
    4. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    5. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    6. Lygnerud, Kristina & Klugman, Sofia & Fransson, Nathalie & Nilsson, Johanna, 2022. "Risk assessment of industrial excess heat collaborations – Empirical data from new and ongoing installations," Energy, Elsevier, vol. 255(C).
    7. Amiri, Shahnaz & Weinberger, Gottfried, 2018. "Increased cogeneration of renewable electricity through energy cooperation in a Swedish district heating system - A case study," Renewable Energy, Elsevier, vol. 116(PA), pages 866-877.
    8. Sandvall, Akram Fakhri & Börjesson, Martin & Ekvall, Tomas & Ahlgren, Erik O., 2015. "Modelling environmental and energy system impacts of large-scale excess heat utilisation – A regional case study," Energy, Elsevier, vol. 79(C), pages 68-79.
    9. Persson, Urban & Werner, Sven, 2012. "District heating in sequential energy supply," Applied Energy, Elsevier, vol. 95(C), pages 123-131.
    10. Thollander, P. & Svensson, I.L. & Trygg, L., 2010. "Analyzing variables for district heating collaborations between energy utilities and industries," Energy, Elsevier, vol. 35(9), pages 3649-3656.
    11. Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
    12. Sandvall, Akram Fakhri & Ahlgren, Erik O. & Ekvall, Tomas, 2016. "System profitability of excess heat utilisation – A case-based modelling analysis," Energy, Elsevier, vol. 97(C), pages 424-434.
    13. Jönsson, Johanna & Svensson, Inger-Lise & Berntsson, Thore & Moshfegh, Bahram, 2008. "Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden--Part 2: Results for future energy market scenarios," Energy Policy, Elsevier, vol. 36(11), pages 4186-4197, November.
    14. Maliszewska-Nienartowicz, Justyna & Stefański, Oskar, 2024. "Decentralisation versus centralisation in Swedish energy policy: the main challenges and drivers for the energy transition at the regional and local levels," Energy Policy, Elsevier, vol. 188(C).
    15. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    16. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
    17. Kumar, Shravan & Thakur, Jagruti & Gardumi, Francesco, 2022. "Techno-economic modelling and optimisation of excess heat and cold recovery for industries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Olsson, Linda & Wetterlund, Elisabeth & Söderström, Mats, 2015. "Assessing the climate impact of district heating systems with combined heat and power production and industrial excess heat," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 31-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    2. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    3. Åberg, M. & Fälting, L. & Forssell, A., 2016. "Is Swedish district heating operating on an integrated market? – Differences in pricing, price convergence, and marketing strategy between public and private district heating companies," Energy Policy, Elsevier, vol. 90(C), pages 222-232.
    4. Joelsson, Anna & Gustavsson, Leif, 2009. "District heating and energy efficiency in detached houses of differing size and construction," Applied Energy, Elsevier, vol. 86(2), pages 126-134, February.
    5. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.
    6. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    7. Egüez, Alejandro, 2020. "Ownership and district heating prices: The case of an unregulated natural monopoly," Umeå Economic Studies 980, Umeå University, Department of Economics.
    8. Torchio, Marco F. & Genon, Giuseppe & Poggio, Alberto & Poggio, Marco, 2009. "Merging of energy and environmental analyses for district heating systems," Energy, Elsevier, vol. 34(3), pages 220-227.
    9. Hiremath, Rahul B. & Kumar, Bimlesh & Balachandra, P. & Ravindranath, N.H., 2010. "Bottom-up approach for decentralised energy planning: Case study of Tumkur district in India," Energy Policy, Elsevier, vol. 38(2), pages 862-874, February.
    10. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Feng, Yifu, 2017. "Planning community energy system in the industry 4.0 era: Achievements, challenges and a potential solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 710-721.
    11. Pereverza, Kateryna & Pasichnyi, Oleksii & Lazarevic, David & Kordas, Olga, 2017. "Strategic planning for sustainable heating in cities: A morphological method for scenario development and selection," Applied Energy, Elsevier, vol. 186(P2), pages 115-125.
    12. Lund, H. & Siupsinskas, G. & Martinaitis, V., 2005. "Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania," Applied Energy, Elsevier, vol. 82(3), pages 214-227, November.
    13. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
    14. Zbigniew Juroszek & Weronika Juroszek, 2018. "Attitudes of heat plant managers as one of the key obstacles to district heating decarbonization in Poland," Energy & Environment, , vol. 29(7), pages 1116-1129, November.
    15. Liu, Wen & Klip, Diederik & Zappa, William & Jelles, Sytse & Kramer, Gert Jan & van den Broek, Machteld, 2019. "The marginal-cost pricing for a competitive wholesale district heating market: A case study in the Netherlands," Energy, Elsevier, vol. 189(C).
    16. Zvingilaite, Erika, 2011. "Human health-related externalities in energy system modelling the case of the Danish heat and power sector," Applied Energy, Elsevier, vol. 88(2), pages 535-544, February.
    17. de Wildt, Tristan E. & Chappin, Emile J.L. & van de Kaa, Geerten & Herder, Paulien M., 2018. "A comprehensive approach to reviewing latent topics addressed by literature across multiple disciplines," Applied Energy, Elsevier, vol. 228(C), pages 2111-2128.
    18. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    19. Klaassen, R.E. & Patel, M.K., 2013. "District heating in the Netherlands today: A techno-economic assessment for NGCC-CHP (Natural Gas Combined Cycle combined heat and power)," Energy, Elsevier, vol. 54(C), pages 63-73.
    20. Andersen, Anders N. & Østergaard, Poul Alberg, 2020. "Support schemes adapting district energy combined heat and power for the role as a flexibility provider in renewable energy systems," Energy, Elsevier, vol. 192(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:34:y:2006:i:13:p:1508-1519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.