IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i10p2264-2270.html
   My bibliography  Save this article

Design charts for impulse turbine wave energy extraction using experimental data

Author

Listed:
  • Thakker, A.
  • Jarvis, J.
  • Sahed, A.

Abstract

This study presents newly developed charts to aid in early design of impulse turbine for wave energy extraction. These charts, based on the available experimental data, represent a simple approach to the performance evaluation of the turbine. The novel approach is applied in a case study that considers the optimum diameter design selection of next-generation impulse turbine power take-off. This allowed the selection of the correct impulse turbine sizing for a required rated power. The result is consistent for such an application, where the optimum rotor diameter would be 1.6m for a maximum rated power of 400kW.

Suggested Citation

  • Thakker, A. & Jarvis, J. & Sahed, A., 2009. "Design charts for impulse turbine wave energy extraction using experimental data," Renewable Energy, Elsevier, vol. 34(10), pages 2264-2270.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:10:p:2264-2270
    DOI: 10.1016/j.renene.2009.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109001566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thakker, Ajit & Hourigan, Fergal, 2004. "Modeling and scaling of the impulse turbine for wave power applications," Renewable Energy, Elsevier, vol. 29(3), pages 305-317.
    2. Thakker, A. & Dhanasekaran, T.S. & Ryan, J., 2005. "Experimental studies on effect of guide vane shape on performance of impulse turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 30(15), pages 2203-2219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markel Penalba & John V. Ringwood, 2016. "A Review of Wave-to-Wire Models for Wave Energy Converters," Energies, MDPI, vol. 9(7), pages 1-45, June.
    2. Falcão, António F.O. & Henriques, João C.C. & Gato, Luís M.C., 2018. "Self-rectifying air turbines for wave energy conversion: A comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1231-1241.
    3. Lopes, Bárbara S. & Gato, Luís M.C. & Falcão, António F.O. & Henriques, João C.C., 2019. "Test results of a novel twin-rotor radial inflow self-rectifying air turbine for OWC wave energy converters," Energy, Elsevier, vol. 170(C), pages 869-879.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayashankar, V. & Anand, S. & Geetha, T. & Santhakumar, S. & Jagadeesh Kumar, V. & Ravindran, M. & Setoguchi, T. & Takao, M. & Toyota, K. & Nagata, S., 2009. "A twin unidirectional impulse turbine topology for OWC based wave energy plants," Renewable Energy, Elsevier, vol. 34(3), pages 692-698.
    2. Thakker, A. & Abdulhadi, R., 2008. "The performance of Wells turbine under bi-directional airflow," Renewable Energy, Elsevier, vol. 33(11), pages 2467-2474.
    3. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Multi-point aerodynamic optimization of the rotor blade sections of an axial-flow impulse air turbine for wave energy conversion," Energy, Elsevier, vol. 45(1), pages 570-580.
    4. Gonçalves, Rafael A.A.C. & Teixeira, Paulo R.F. & Didier, Eric & Torres, Fernando R., 2020. "Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber," Renewable Energy, Elsevier, vol. 153(C), pages 1183-1193.
    5. Yongyao Luo & Alexandre Presas & Zhengwei Wang, 2019. "Numerical Analysis of the Influence of Design Parameters on the Efficiency of an OWC Axial Impulse Turbine for Wave Energy Conversion," Energies, MDPI, vol. 12(5), pages 1-12, March.
    6. Hong-Goo Kang & Young-Ho Lee & Chan-Joo Kim & Hyo-Dong Kang, 2022. "Design Optimization of a Cross-Flow Air Turbine for an Oscillating Water Column Wave Energy Converter," Energies, MDPI, vol. 15(7), pages 1-15, March.
    7. Saleem, Abdul Samad & Cheema, Taqi Ahmad & Ullah, Rizwan & Ahmad, Sarvat Mushtaq & Chattha, Javed Ahmad & Akbar, Bilal & Park, Cheol Woo, 2020. "Parametric study of single-stage gravitational water vortex turbine with cylindrical basin," Energy, Elsevier, vol. 200(C).
    8. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    9. Elatife, Khalid & El Marjani, Abdellatif, 2019. "Efficiency improvement of a self-rectifying radial impulse turbine for wave energy conversion," Energy, Elsevier, vol. 189(C).
    10. Pereiras, Bruno & López, Iván & Castro, Francisco & Iglesias, Gregorio, 2015. "Non-dimensional analysis for matching an impulse turbine to an OWC (oscillating water column) with an optimum energy transfer," Energy, Elsevier, vol. 87(C), pages 481-489.
    11. Liu, Hua & Wang, Weijun & Wen, Yadong & Mao, Longbo & Wang, Wenqiang & Mi, Hongju, 2019. "A novel axial flow self-rectifying turbine for use in wave energy converters," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:10:p:2264-2270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.